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This paper investigates trading mechanisms for efficiently (re)allocating a good to agents
who face liquidity constraints and have private information about their valuation. I derive
a necessary and sufficient condition for the existence of ex post efficient, interim incentive
compatible, interim individually rational, ex post budget balanced and ex post liquidity con-
strained trading mechanisms. The framework notably applies to partnership problems for
which I show that the optimal ownership structures are typically asymmetric and that agents
with low liquidity resources should initially receive larger shares, and vice versa. I also show
that a larger market size tends to increase the agents’ minimal liquidity requirements nec-
essary for existence. This is at odds with the standard property that a larger market size
facilitates existence in asymmetric information environments. Finally, I propose a liquidity-
constrained ex post efficient auction that implements the (re)allocation mechanism.
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1. INTRODUCTION

In markets with asymmetric information, liquidity constraints directly conflict with the de-
sign of incentive compatible trading mechanisms. On the one hand, such mechanisms must
offer a price schedule from which agents with different valuations are incentivized to choose
different prices so as to reveal their private information. On the other hand, liquidity constraints
may prevent agents to choose the highest prices in the schedule, making it impossible to ensure
full revelation of information. That is, trading mechanisms must create a spread in possible
prices offered to each agent to allow them to reveal information while liquidity constraints
restricts the size of this spread.

When designing centralized markets, this issue can be partially addressed by subsidizing the
most liquidity-constrained agents with the resources of the least liquidity-constrained agents
through lump-sum transfers. As long as these transfers are reasonably low not to affect the
participation or liquidity constraints of the least liquidity-constrained agents, there might exist
a feasible scheme that provide enough resources to liquidity-constrained agents to choose any
price of the incentive compatible schedule. Although useful, this approach alone is insufficient
to account for the most restrictive cases of constraints on liquidity as it takes the incentive
compatible price schedule as given. Instead, the price schedule must be designed to minimize
the need for liquidity resources – and consequently subsidies – while maintaining its incentive
compatibility properties.

To illustrate this last point, consider the following example.
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EXAMPLE 1: Leave aside for a moment the usual participation and budget balance con-
straints and consider standard first and second-price auctions to allocate an indivisible good.
When n agents with valuations vi drawn i.i.d. from a uniform distribution over [0,1] partici-
pate, the equilibrium bidding strategies induced by first and second-price auctions are respec-
tively βF (vi) =

n−1
n
vi and βS(vi) = vi.1 In both cases, agents fully reveal their information

through their choice of bid and the good is ex post efficiently allocated. Notice, however, that
the second-price auction induces a price schedule with range in [0,1] while the first-price auc-
tion only requires it to be in [0, n−1

n
].

In the case n= 2, each agent i only needs an amount of liquidity li ≥ 1
2

to afford all possible
prices of the first-price auction while they need twice as much in the second-price auction.
Assume for instance that the two agents have initial liquidity resources l1 ∈ [0, 1

2
) and l2 = 1,

and that the designer can enforce any liquidity redistribution between them. It is clear that there
is no feasible redistribution of liquidity that ensures solvency in the second-price auction while
one always exists in the first-price auction for any value of l1 ∈ [0, 1

2
).

Coming back to the case n≥ 2, it is instructive to notice that the range of prices in the first-
price auction is increasing in n and converges to [0,1]. That is, liquidity requirements in the
first-price auction increase in the number of participants and eventually correspond to these in
the second-price auction. Hence, when n is large both auctions push the individual liquidity
requirements to the upper bound of the support of valuations.

Although this example deliberately ignores some fundamental constraints of the trading
mechanisms studied in this paper, it captures two important intuitions that extend to the general
setting: (i) two incentive compatible trading mechanisms can have rather different implica-
tions for liquidity requirements and/or for the amount of necessary cross-subsidy; and (ii) the
range of the price schedule induced by an incentive compatible mechanism tends to increase
in the number of participants – as illustrated by the first-price auction mechanism. From this
last point, it follows that higher levels of aggregate and individual liquidity requirements are
necessary when the number of market participants increases.

Previous and recent literature on this topic has mostly focused on the problem of designing
optimal mechanisms in environments with one-sided private information such as the design of
an auction for the sale of a good to privately informed buyers.2 They generally assume that
agents are ex ante identified buyers or sellers and do not allow for type-dependent outside
options when agents refuse to participate in the trading mechanism. These assumptions rule
out, for instance, buyers-seller relationships with private information on both sides in the spirit
of Myerson and Satterthwaite (1983), partnership environments as in Cramton et al. (1987),
or the study of ex post efficient auctions to allocate a good to privately informed agents with
type-dependent outside options.

In contrast, this paper deals with the design of ex post efficient trading mechanisms in an en-
vironment that encompasses the one-sided and two-sided private information cases. The speci-
fication of the agents’ outside option is general and can depend on the valuations of all partic-
ipants. Therefore the framework can be applied to a variety of environments, such as the ones

1In the general case of i.i.d. valuations with absolutely continuous cumulative distribution function F (vi) with

support on [v, v], the equilibrium bidding strategy in a first-price auction writes βF (vi) =
∫ vi
v ydF (y)n−1

F (vi)n−1 .
2The optimal revenue maximizing and constrained-efficient auction with symmetric liquidity constraints have been

respectively studied by Laffont and Robert (1996) and Maskin (2000). Boulatov and Severinov (2021) extend these
results with asymmetric liquidity constraints while Pai and Vohra (2014) investigate the case of privately known
liquidity constraints.
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mentioned above. More precisely, I investigate the existence of ex post efficient, interim incen-
tive compatible, interim individually rational, ex post budget balanced, and ex post liquidity
constrained trading mechanisms.

The three main contributions of this paper are as follows. First, I derive a necessary and suffi-
cient condition for the existence of such trading mechanisms. I notably show how environments
with liquidity constraints can be related to standard Groves mechanisms and to the expected
externality mechanism.3

Second, I investigate the partnership dissolution problem as a special case of the frame-
work so as to characterize the relationship between the initial allocation of property rights and
liquidity constraints. In contrast to one of Cramton et al. (1987)’s main results, equal-share
partnerships do not always guarantee the existence of an efficient trading mechanism. Initial
distributions of liquidity resources and property rights must be well-balanced in the sense that
an agent’s initial share of the asset must be (weakly) inversely related to their liquidity re-
sources.

Third, the findings provide a cautionary message regarding the importance of liquidity con-
straints in asymmetric information environments. Most noticeably, a large number of partic-
ipants in such markets tends to drastically increase their liquidity requirements as presented
in Section 5. This finding is at odds with the standard argument that a larger market is unam-
biguously beneficial to the existence of trading mechanisms in asymmetric information envi-
ronments. Section 6 presents a liquidity-constrained ex post efficient auction and show how it
accounts for these features.

Several contributions related to liquidity constraints can be found in the auction litera-
ture. The early works of Laffont and Robert (1996) and Maskin (2000) respectively study the
revenue-maximizing auction and a constrained-efficient auction with symmetrically liquidity-
constrained bidders. Malakhov and Vohra (2008) derive the revenue-maximizing optimal mech-
anism with discrete values and when only one bidder is liquidity constrained. Recently, Boula-
tov and Severinov (2021) greatly extended these results to asymmetrically liquidity-constrained
bidders. Another strand of this literature investigates the case of bidders privately informed
about their liquidity constraints. Pai and Vohra (2014) derive the optimal auction when both
valuations and liquidity constraints are private information while Kotowski (2020) studies first-
price auctions in a similar environment. These frameworks, however, are limited to one-sided
asymmetric information environments and study either revenue maximization or constrained
efficiency at the ex ante stage. Therefore, their analysis is silent about conditions under which
ex post efficiency can be achieved in the presence of liquidity constraints and does not cover
environments of bilateral trade or partnership problems.

By contrast, the present paper builds on the literature of ex post efficient trading mechanisms
in two-sided asymmetric information environments, as introduced by the works of Myerson
and Satterthwaite (1983) and Cramton et al. (1987). Loertscher et al. (2015) refer to these
environments as as secondary-market allocation problems, in opposition to primary-market
allocation problems such as the above mentioned auction settings.4 These models offer a gen-
eral framework to analyze markets with privately informed traders who are not necessarily ex
ante identified as buyers or sellers and can account for various initial ownership structures or
type-dependent outside options. The framework has been extended to asymmetric and inter-
dependent distributions (Figueroa and Skreta, 2012, Fieseler et al., 2003, Jehiel and Pauzner,

3See d’Aspremont and Gérard-Varet (1979) and Section 3.
4Loertscher et al. (2015) also stress that the design of two-sided private information settings is fundamentally dif-

ferent from their one-sided counterparts. Notably, as the conflict between revenue and efficiency is more pronounced
in two-sided settings, efficient mechanisms can merely fail to exist.
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2006), ex post individual rationality (Galavotti et al., 2011), and second-best mechanisms (Lu
and Robert, 2001, Loertscher and Wasser, 2019). However to the best of my knowledge, the
present paper is the first to study ex post efficient trading mechanisms in two-sided asymmetric
information environments with liquidity-constrained agents.

This paper is organized as follows. Section 2 introduces the theoretical framework. Section
3 presents the necessary and sufficient condition for existence and relates the result to Groves
mechanisms and the expected externality mechanism. In Section 4, I apply the existence re-
sult to the special case of partnerships and characterize ownership and liquidity distributions
compatible with existence. Section 5 investigates how the market size affects the agents’ liq-
uidity requirements. Section 6 proposes an auction to implement efficient trading mechanisms.
Section 7 briefly concludes. All proofs are given in the Appendix.

2. THEORETICAL FRAMEWORK

There are n risk-neutral agents indexed by i ∈ N := {1, . . . , n} and one good. Each agent
i ∈N has private information about their valuation vi for the entire good. It is, however, com-
mon knowledge that each valuation vi is drawn independently from an absolutely continuous
cumulative distribution function Fi with support Vi := [vi, vi] ⊆ R+ and positive continuous
density fi. Further assume that Vi ∩ Vj ̸= ∅ for any i, j and define V :=×i∈NVi.

The utility of agent i is assumed to be of the form vixi+mi, where xi is the share of the good
they receive and mi is money. Each agent i ∈N is endowed with some liquidity resources, or
budget, denoted by li ∈ R+. This amount corresponds to the maximal payment agent i can
make given their current financial situation.

For future reference, let v := (v1, . . . , vn) ∈ V and l := (l1, . . . , ln) ∈ Rn
+ define the vectors

of agents’ valuations and liquidity resources, respectively. Furthermore, let v−i denote the vec-
tor of valuations of all agents except that of agent i. Finally, define (vi, v−i) := v for any i ∈N ,
where arguments are ordered differently only for readability.

By the Revelation Principle, there is no loss of generality in restricting mechanisms to direct
revelation mechanisms. Hence, each agent i ∈N directly reports their valuation vi, all reports
are collected, and the mechanism determines each individual allocation si : V → [0,1] and
each individual transfer ti : V → R.5 The resource constraint on the good further imposes that∑

i∈N si(v) ≤ 1. Let s(v) := (s1(v), . . . , sn(v)) ∈∆n−1 and t(v) := (t1(v), . . . , tn(v)) ∈ Rn

be the collections of individual ex post allocation rules and transfers, respectively. The pair
(s, t) is referred to as a mechanism.

The ex post net utility of agent i ∈N who participates in the mechanism (s, t) is given by
visi(v) + ti(v) − u0

i (vi, v−i), where u0
i (vi, v−i) is agent i’s outside option if they refuse to

participate.
Let Si(vi) := E−isi(vi, v−i), Ti(vi) := E−iti(vi, v−i), and U0

i (vi) := E−iu
0
i (vi, v−i) denote

the interim expected values of the allocation rule, the transfer rule, and the outside option,
respectively. Further assume that U0

i (vi) is continuously differentiable in vi.
Assuming all agents j ̸= i report truthfully, the net interim expected utility of agent i with

type vi who decides to participate, and reports v̂i is given by

Ui(vi, v̂i) := viSi(v̂i) + Ti(v̂i)−U0
i (vi).

The mechanism (s, t) is interim incentive compatible (IIC) if it is a Bayesian Nash equilib-
rium that each agent reports truthfully. Formally, (s, t) is IIC if for all i ∈ N , vi ∈ Vi and

5The allocation rule si can be interpreted either as the share of the good allocated to agent i or the probability of
this agent to receive it.
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v̂i ∈ Vi, Ui(vi, vi)≥ Ui(vi, v̂i). For convenience, let Ui(vi) := Ui(vi, vi) denote the net interim
expected utility of agent i in the associated IIC mechanism (s, t).

To ensure participation, a mechanism (s, t) must be interim individually rational (IIR). Given
that all agents report truthfully, agent i is willing to participate in the mechanism at the interim
stage if and only if Ui(vi)≥ 0 for all i ∈N , vi ∈ Vi.

The mechanism must also be ex post budget balanced (EPBB) to avoid the need for external
subsidy. Formally, the transfers among all agents must balance out, i.e.

∑
i∈N ti(v) = 0 for all

v ∈ V .
Liquidity constraints require that ex post transfers never exceed agents’ liquidity resources,

that is, ti(v)≥−li for all i ∈N and all v ∈ V . Such mechanisms will be called ex post liquidity
constrained mechanisms (EPLC).

Finally, I restrict the analysis to ex post efficient mechanisms (EF), that is, mechanisms such
that the good is ex post efficiently allocated to the agent with the highest valuation. Formally,
(s, t) is EF if, for all v ∈ V , the ex post allocation rule satisfies:

s∗(v) ∈ argmax
s∈∆n−1

∑
i∈N

visi(v).

The ex post efficient allocation rule can be rewritten as follows. For each agent i and all v ∈ V ,

s∗i (v) =

{
1, if i= ρ(v)

0, if i ̸= ρ(v)
,

where ρ(v) := min
{
j ∈N | j ∈ argmaxi vi

}
breaks ties in favor of the agent with the lowest

index.6

For later use, it is useful to define for each profile of valuations v ∈ V , the ex post gains from
trade from implementing an ex post efficient mechanism (s∗, t) by

g(v) :=
∑
i∈N

vis
∗
i (v).

3. THE EXISTENCE CONDITION

The statement of the theorem simply relies on four fundamental primitives of the environ-
ment: (i) liquidity resources, both at the individual and at the aggregate level; (ii) the shape and
value of the outside options; (iii) the number of participants; and (iv) the distribution of agents’
valuations.

The first two define an upper bound on how much each agent can contribute to the mecha-
nism. The last two determine the deficit generated by the implementation of an ex post efficient
and interim incentive compatible trading mechanism. The existence of any ex post efficient
trading mechanism simply relies on whether the sum of all agents’ maximal feasible contribu-
tions is sufficiently large to cover the deficit generated by imposing incentive constraints.

To introduce these elements and expose the existence condition intuitively, I rely on the
well-known result that any ex post efficient and interim incentive compatible mechanism is
payoff-equivalent to a Groves mechanism at the interim stage. The formal proof of the existence

6This particular tie-breaking rule is without loss of generality. As valuations are drawn from absolutely continuous
cumulative distribution functions, ties occur with zero probability so that agents’ interim participation decision are
unaffected by this choice.
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theorem, however, does not rely on this methodology as I propose some results that go beyond
ex post efficient mechanisms. The interested reader can find the proof in the Appendix.

Following Makowski and Mezzetti (1994) and Williams (1999), for any ex post efficient and
interim incentive compatible mechanism (s∗, t) there exists a Groves mechanism (s∗, t∗) that
is payoff-equivalent at the interim stage for each agent. Formally, a Groves mechanism (s∗, t∗)
is such that the transfer to agent i ∈N writes as follows:

t∗i (v) = g(v)− vis
∗
i (v)− hi(v), (1)

where the function hi : V → R is referred to as a non-distortionary charge and is such that
E−i hi(vi, v−i) = E−i hi(v̂i, v−i) =:Hi for all vi, v̂i ∈ Vi.

In a nutshell, the first two terms, g(v)− vis
∗
i (v), constitute a basic Groves mechanism and

ensure that truth telling is a Bayesian Nash equilibrium of the revelation game as each agent re-
ceives the entire gains from trade at the ex post stage. The last term, hi(v), serves as a means to
redistribute money and ensures budget balance ex post without distorting incentives for truthful
reporting as it appears as a constant in agent i’s interim expected utility.

Using equation (1), the interim utility of agent i in the Groves mechanism (s∗, t∗) writes

Ui(vi) = E−i g(v)−U0
i (vi)−Hi,

which is also the interim utility of agent i in any EF and IRR trading mechanism by
payoff-equivalence at the interim stage. Hence, agent i’s worst-off type receives utility
infvi∈Vi

Ui(vi) = infvi∈Vi
{E−i g(v)−U0

i (vi)} −Hi. Then, it is convenient to define

Ci := inf
vi∈Vi

{E−ig(v)−U0
i (vi)}, (2)

as the largest feasible interim non-distortionary charge that can be imposed on agent i due to
interim individual rationality, or equivalently, Hi ≤Ci.

Agent i’s maximal feasible contribution is ultimately defined by min{Ci, li}, i.e. by whether
it is more difficult to satisfy agent i’s individual rationality or liquidity constraint.7 It simply
follows that

∑
i∈N min{Ci, li} determines the total amount of feasible contributions from all

agents for a given distribution of liquidity resources and outside options.
Finally, notice that EPBB requires that

∑
i∈N

(
g(v)− vis

∗
i (v)−hi(v)

)
= 0, which is equiv-

alent to (n− 1)g(v) =
∑

i∈N hi(v) for all v ∈ V . The left-hand side, (n− 1)g(v), corresponds
to the ex post deficit generated by the basic Groves mechanism. This last condition therefore
implies that (n− 1)Eg(v) =

∑
i∈N Hi must hold as a necessary condition at the ex ante stage,

that is, the sum of ex ante non-distortionary charges must be equal to the ex ante deficit gener-
ated by the basic Groves mechanism.

For convenience, let G := Eg(v) denote the ex ante gains from trade. All together, the above
conditions implies the following necessary condition:

∑
i∈N min{Ci, li} ≥

∑
i∈N Hi = (n−

1)G.
The existence theorem states that this condition is also sufficient for the existence of trading

mechanisms.

7In the Groves mechanism (s∗, t∗), EPLC requires that t∗i (v)≥−li for all i ∈N and all v ∈ V . EPLC implies
the following necessary condition at the interim stage: E−i

[
g(v)− vis∗i (v)

]
−Hi ≥ −li. It is easy to show that

minvi∈Vi E−i

[
g(v)− vis∗i (v)

]
= 0 at vi = vi so that the condition collapses to Hi ≤ li.
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THEOREM 1: Let Vi = [v, v] for all i ∈N . An EF, IIC, IIR, EPBB and EPLC trading mech-
anism exists if and only if ∑

i∈N

min{Ci, li} ≥ (n− 1)G. (3)

Notice that when liquidity resources of all agents are large enough, condition (3) simply
becomes

∑
i∈N Ci ≥ (n− 1)G and thus corresponds to the existence condition of Makowski

and Mezzetti (1994) and Williams (1999).8 Condition (3) provides a natural extension of their
existence condition to environments with liquidity-constrained agents.

In the Appendix, I show that condition (3) can be generalized as a necessary condition of
existence for any support of distributions of valuations V =×i∈N [vi, vi], and any feasible and
interim incentive compatible allocation rule si : V → [0,1] with

∑
i∈N si(v)≤ 1.9

Regarding the sufficiency of condition (3), the main challenge is to construct a transfer
rule that accounts for the most restrictive cases of liquidity constraints. One of the most com-
monly used transfer rule in the literature is the expected externality mechanism introduced by
d’Aspremont and Gérard-Varet (1979).10 I now explain why this transfer rule fails in liquidity-
constrained environments and show how it should be modified.

For the sake of exposition, let Fi = F and Vi = [v, v] for all i ∈N , and define

φ̃i(v) := E−i

∑
j ̸=i

vjs
∗
j (v). (4)

The expected externality mechanism is such that the transfer to agent i writes:

t̃i(v) := φ̃i(v)−
1

n− 1

∑
j ̸=i

φ̃j(v) + ϕ̃i, (5)

where ϕ̃i ∈R is a constant transfer to agent i such that
∑

i∈N ϕ̃i = 0.
The definition of equation (4) is simply a Groves mechanism and it guarantees that truth-

telling is Bayes-Nash equilibrium. The second term of equation (5) ensures ex post budget
balance without distorting these incentives. This construction, however, creates a large range of
ex post payments which in turn require agents to have important liquidity resources. Formally,
the transfer rule defined by (5) has a range of 2E[maxj ̸=i vj ], that is, two times the expected
value of the maximum of n−1 valuations.11 This range of ex post payments is excessive, in the
sense that relying on the expected externality mechanism might fail due to liquidity constraints
even when condition (3) is satisfied.

It is possible to construct a transfer rule similar to (5) but inducing a lower range of ex post
payments. The trick is to replace the valuations of the other agents in equation (4), ranging from
v to v, by a function of these valuations that compresses this range but keeps the incentives to
reveal truthfully unmodified.

8More precisely, Theorem 3.1 in Makowski and Mezzetti (1994) and condition (8) of Theorem 3 in Williams
(1999).

9The generalized condition corresponds to equation (15). This generalization is notably used in Example 3 of
Section 5 to account for asymmetric supports in a one seller and n − 1 buyers trading problem. I believe that the
generalized condition is also a sufficient condition for existence, but it is an open question.

10It can notably be found in Cramton et al. (1987), Lu and Robert (2001), Fieseler et al. (2003), Ledyard and
Palfrey (2007), or Segal and Whinston (2011), among others.

11It is easy to see that maxv∈V t̃i(v) = E[maxj ̸=i vj ] + ϕ̃i when vi = v and vj = v for all j ̸= i, and that
minv∈V t̃i(v) =−E[maxj ̸=i vj ] + ϕ̃i when vi = v and vj = v for all j ̸= i.
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Let φi(v) :=
∑

j ̸=iψ(vj)s
∗
j (v), where ψ(y) := n−1

n
E[g(v) | g(v) ≤ y].12 The transfer rule

for agent i now writes as

ti(v) := φi(v)−
1

n− 1

∑
j ̸=i

φj(v) + ϕi, (6)

which obviously satisfies budget balance as long as
∑

i∈N ϕi = 0. It can be shown that it also
induces truth-telling as a Bayes-Nash equilibrium (details can be found in the Appendix). More
importantly, it is useful to notice that ψ(y) is increasing in y ∈ [v, v], that ψ(v) = n−1

n
v and

ψ(v) = n−1
n
G. In other words, the function ψ compresses the range of φi(v) to G and as a

result, equation (6)’s range is also G.13The proof of sufficiency of condition (3) relies on a
similar construction but extended to the case of asymmetric distributions of valuations.

This modification of the standard expected externality mechanism is arguably quite simple
and yet prevents the mechanism to require unnecessary large amount of liquidity resources.
In addition, given that it satisfies liquidity constraints as long as the necessary and sufficient
condition (3) holds, it also means that it is a transfer rule with the minimum possible ex post
range that satisfies incentive, participation and budget balance constraints.

4. PARTNERSHIPS

A special case of this framework is the partnership dissolution problem that was first intro-
duced by Cramton et al. (1987). A n-agent partnership is characterized by an initial ownership
distribution over the asset to be traded and the problem consists in finding a dissolution mech-
anism such that ownership shares are reallocated to the partner who values them the most.
I apply Theorem 1 to the partnership framework and characterize distributions of ownership
shares and liquidity resources allowing for existence of a dissolution mechanism. For the sake
of clarity, I rely once again on the approach introduced in Section 3.

Let r := (r1, . . . , rn) ∈∆n−1 denote the initial distribution of ownership shares among the
n agents. Each agent’s share determines their outside option if they refuse to participate in
the dissolution mechanism, that is, u0

i (v) = viri. For notational convenience, define F−i(y) :=∏
j ̸=iFj(y) and f−i := F ′

−i with support on [ai, bi] := [maxj ̸=i vj ,maxj ̸=i vj ]. Using equation
(2) and u0

i (v) = viri, agent i’s constraint on the non-distortionary charge due to individual
rationality writes as follows:

Ci(ri) := inf
vi∈Vi

{∫ vi

ai

vidF−i(y) +

∫ bi

vi

ydF−i(y)− viri

}
, (7)

where Ci(·) is explicitly defined as a function of agent i’s ownership share ri for later use.
Agent i’s worst-off type v∗i is defined by the first-order condition of problem (7), that is,

F−i(v
∗
i ) = ri, (8)

12To avoid confusion with notations, the function ψ can also be written ψ(y) = n−1

n

∫ y
v xdF (x)n

F (y)n
.

13It is useful to notice that ti(v) =−ψ(vi) when ρ(v) = i and ti(v) = 1
n−1

ψ(vj) when ρ(v) = j ̸= i. As ψ(y)
is increasing in y, it follows that maxv∈V ti(v) =

1
n−1

ψ(v) = 1
n
G and minv∈V ti(v) =−ψ(v) =−n−1

n
G. The

range of ti(v) immediately follows as maxv∈V ti(v)−minv∈V ti(v) =G.
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if there exists such a v∗i ∈ Vi.14 Otherwise, v∗i = vi if F−i(vi)< ri and v∗i = vi if F−i(vi)> ri.
This characterization of worst-off types in partnership problems is a generalization of Cramton
et al. (1987) to the case of asymmetric distributions and supports of valuations.

Hence, Ci(ri) can be rewritten as

Ci(ri) =

∫ bi

v∗
i (ri)

ydF−i(y) + v∗i (ri)
(
F−i(v

∗
i (ri))− ri

)
, (9)

where v∗i (ri) denotes agent i’s worst-off type and is defined as follows:

v∗i (ri) =


vi if F−i(vi)> ri or ri = 0

vi if F−i(vi)< ri or ri = 1

F−1
−i (ri) otherwise.

(10)

The cases v∗i (0) = vi and v∗i (1) = vi are defined for convenience as agent i’s worst-off type
might not be unique when ri ∈ {0,1}. Applying the envelope theorem to equation (7) gives that
C ′

i(ri) =−v∗i (ri) so that Ci(ri) is both decreasing and concave in ri as v∗i (ri) is increasing in
ri.

Under the symmetric supports assumption, Vi = [v, v] for all i ∈ N , notice that Ci(0) =∫ v

v
ydF−i(y) and Ci(1) = 0. In words, the largest non-distortionary charge that can be levied

on agent i without any ownership share, Ci(0), corresponds to the (n− 1)th order statistics of
the agents’ valuations. This largest charge decreases as the ownership share of agent i increases
and becomes null when agent i has full ownership of the asset. Ownership provides agents with
a form of bargaining power in the dissolution mechanism.

The existence condition of a dissolution mechanism in partnership environments directly
follows as a corollary of Theorem 1.

COROLLARY 1: Let Vi = [v, v] for all i ∈N . A partnership with ownership rights r ∈∆n−1

and liquidity resources l ∈Rn
+ can be dissolved efficiently if and only if∑

i∈N

min{Ci(ri), li} ≥ (n− 1)G. (11)

Equation (11) together with the characterization of Ci(ri) clearly highlight that the interplay
between the distributions of ownership shares and liquidity resources among agents affects
the sum of non-distortionary charges and thus the existence of a dissolution mechanism. As
for Theorem 1, equation (3) also holds as a necessary condition of existence in the case of
asymmetric supports of valuations.

I now present some characterization results relative to this issue. I further assume that agents’
valuations are i.i.d. random variables, that is Fi = F and Vi = [v, v] for all i ∈N , where F is an
absolutely continuous cumulative distribution function. This assumption can be easily relaxed
but I find it useful to present clear-cut characterization results about the interaction between
ownership shares and liquidity resources.

14The first-order condition is also a sufficient condition for a global minimum as ∂2

∂v2
i
(E−ig(vi, v−i)− viri) =

vif−i(vi) ≥ 0 for all vi ∈ Vi. Notice that the solution to equation (8) might not exist or is not necessarily unique
when the supports of valuation are asymmetric. When supports are symmetric, however, equation (8) fully and
uniquely determines agent i’s worst-off type.
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For convenience, let r̃i ∈ [0,1] be defined by r̃i = 0 when li >Ci(0) and byCi(r̃i) = li when
li ≤ Ci(0). This threshold characterizes which is the most restrictive constraint between IIR
and EPLC as min{Ci(ri), li} = li when ri ≤ r̃i, and min{Ci(ri), li} = Ci(ri) when ri > r̃i.
Notice also that r̃i is decreasing in li and can thus be seen as a measure of the severity of
liquidity constraints on agent i’s collectible charge. Then,

∑
i∈N r̃i is an aggregate measure of

the severity of liquidity constraints in the partnership.
The first set of results assumes the distribution of liquidity resources fixed and characterizes

the corresponding ownership structures that maximize the sum of agents’ collectible charges.
I refer to this ownership structure as the optimal distribution of property rights. For ease of
exposition assume, without loss of generality, that l1 ≥ · · · ≥ ln so that r̃1 ≤ · · · ≤ r̃n.

PROPOSITION 1: Let Fi = F and Vi = [v, v] for all i ∈ N . For any l ∈ Rn
+ such that∑

i∈N r̃i ≤ 1, the optimal distribution of property rights r∗ ∈∆n−1 is as follows:
a. If r̃i ≤ 1

n
for all i ∈N , then r∗ = ( 1

n
, . . . , 1

n
);

b. If r̃i > 1
n

for some i ∈N , then r∗ = (r̂, r̂, . . . , r̂, r̃p, r̃p+1, . . . , r̃n) where r̂ =
1−

∑
j≥p r̃j

p−1

for some p ∈N such that maxi<p r̃i < r̂ ≤minj≥p r̃j .

When liquidity constraints are not too severe at the aggregate level, i.e.
∑

i∈N r̃i ≤ 1, the
optimal distribution of property rights r∗ can take two forms. Proposition 1.a states that if
liquidity constraints are also mild at the agent level for all agents, then equal sharing of owner-
ship maximizes agents’ collectible charges. This case corresponds to one of the main results of
Cramton et al. (1987) who also show that this ownership structure always ensures existence of
a dissolution mechanism.

On the contrary, Proposition 1.b states that if liquidity constraints are too severe for some
agents, then the optimal distribution of property rights allocates (weakly) more initial owner-
ship shares to more liquidity-constrained agents. It should be noted that the sum of collectible
charges in 1.b is always lower than in 1.a as the departure from equal sharing ownership is the
result of a trade-off due to the severity of liquidity constraints at the individual level for some
agents. Hence, distributing initial ownership shares as in 1.b does not necessarily guarantee that
equation (11) holds, i.e, that a dissolution mechanism exists.

EXAMPLE 2: To illustrate Proposition 1.b, consider a two-agent partnership in which agent
1 is not liquidity constrained, i.e. r̃1 = 0, whereas agent 2 is heavily liquidity constrained so
that r̃2 ∈ [ 1

2
,1).

It is clear that starting from any r2 < r̃2, and in particular r2 = 1
2

, it is possible to strictly
increase the sum of feasible contributions

∑
i=1,2min{Ci(ri), li}=C1(r1) + l2 by increasing

r2 up to r̃2 as Ci(·) is a decreasing function and min{C2(r2), l2} = l2 is unchanged for all
r2 ≤ r̃2. In other words, it is innocuous to give more initial ownership rights to heavily liquidity-
constrained agents as their feasible contribution is already limited by their liquidity resources.
On the other hand, it allows to give less initial ownership rights to less liquidity-constrained
agents and collect more from them.

It is easy to construct an example in which the equal-share partnership does not allow for a
dissolution mechanism to exist while an asymmetric initial allocation or property rights does.
For instance, take Fi(vi) = vi and Vi = [0,1] for i= 1,2, so thatG= 2

3
and Ci(ri) =

1
2
[1−r2i ].

Further assume that r̃2 = 0.7, which corresponds to l2 = 0.255. In that case, it is clear that
existence fails under equal-share ownership as

∑
i=1,2min{Ci(

1
2
), li} = C1(

1
2
) + l2 = 3

8
+

0.255 = 0.63 < G. On the contrary, let for instance r1 = 0.3 and r2 = r̃2 = 0.7. Then the
sum of feasible contributions becomes C1(0.3) + l2 = 0.455 + 0.255 = 0.71 > G so that a
dissolution mechanism exists.
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While Proposition 1 shows that the distribution of property rights exhibits some structure
when liquidity constraints are mild enough at the aggregate level, the next result shows that
this is not the case when there are more severe, that is, when

∑
i∈N r̃i > 1 holds.

PROPOSITION 2: Let Fi = F and Vi = [v, v] for all i ∈ N . For any l ∈ Rn
+ such that∑

i∈N r̃i > 1, an optimal distribution of property rights r∗ ∈ ∆n−1 is such that r∗i ≤ r̃i for
all i ∈N ,

∑
i∈N r

∗
i = 1, and

∑
i∈N min{Ci(r

∗
i ), li}=

∑
i∈N min{Ci(0), li}.

The only structure that property rights should satisfy is that agents’ shares must be such
that for all i ∈ N , r∗i ≤ r̃i and

∑
i∈N r

∗
i = 1. This last condition can always be satisfied for

some r∗ ∈∆n−1 as
∑

i∈N r̃i > 1 by assumption. It is worth noticing that if some agent j has
r̃j = 0, that is lj > Cj(0), the optimal distribution of property rights allocates no initial own-
ership share to this agent. The resulting optimal distribution of property rights does not have
much structure on the side of heavily liquidity-constrained agents. It does, however, exhibit the
particular feature that agents with large liquidity resources should receive no initial property
rights.

The second set of characterization results only assumes that the total amount of liquidity
resources is fixed but allows for any distribution of liquidity and ownership among agents. Let
L ∈ R+ denote the total amount of available liquidity resources in the n-agent partnership. A
couple (r∗, l∗) is said to be an optimal organization of the partnership if it solves

(r∗, l∗) ∈ argmax
(r,l)

∑
i∈N

min{Ci(ri), li},

subject to (r, l) ∈∆n−1 ×Rn
+ and

∑
i∈N li = L.

As it is now possible to choose the distribution of liquidity resources and ownership shares si-
multaneously, the optimal organization of the partnership will rely crucially on the total amount
of liquidity resources L. If it is large enough, it is possible to allocate enough liquidity resources
to each agent so as to achieve the highest collectible charge in a partnership, i.e, the one corre-
sponding to equal sharing of ownership in the absence of liquidity constraints (Cramton et al.,
1987). Otherwise, the best that can be done is to arrange the distributions so as to collect the
total amount of liquidity resources among agents. The next proposition formalizes these intu-
itions.

PROPOSITION 3: For any L ∈ R+, where L :=
∑

i∈N li, an optimal organization of the
partnership (r∗, l∗) achieves the following maximal collectible charge∑

i∈N

min{Ci(r
∗
i ), l

∗
i }=min{

∑
i∈N

Ci(1/n),L}.

From Proposition 3 it is straightforward that a dissolution mechanism exists if and only if
L≥ (n− 1)G, assuming one can choose an optimal organization for the partnership.15 That is,
as long as the total amount of liquidity resources is enough to cover the budget deficit generated
by a Groves mechanism, it is always possible to allocate liquidity resources and ownership
shares in a way that a dissolution mechanism exists.

15This stems directly from Cramton et al. (1987) who show that equal sharing of ownership always allows for ex
post efficient dissolution in the absence of liquidity constraints, that is,

∑
i∈N Ci(1/n)≥ (n− 1)G.
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5. MARKET SIZE

The existence condition of Theorem 1 crucially relies on the ex ante expected deficit gener-
ated by a Groves mechanism (n− 1)G. This deficit directly stems from the incentive compat-
ibility requirement as from equation (1), the interim expected payoff of agent i must be equal
to E−i[g(v) − vis

∗
i (v)] − Hi in any ex post efficient and interim incentive compatible trad-

ing mechanism. As the number of agents participating in the trading mechanism increases, the
deficit (n− 1)G increases as well. Not only it increases through (n− 1) but also through G,
the ex ante expected gains from trade.16 Hence, as the number of agents increases, the volume
of transfers among participants must increase to cover the deficit generated by the incentive
compatibility requirement.

At first glance, it seems difficult to assess the impact of the number of agents on the existence
of efficient trading mechanisms in the general case described by Theorem 1 as both sides of
equation (3) may vary with the number of agents. It is clear, however, that a necessary condition
for equation (3) to hold is that

∑
i∈N li ≥ (n − 1)G. The next result illustrates that liquidity

constraints become quite restrictive when the number of agents increases.

PROPOSITION 4: Assume li = l̃ ∈R+ for all i ∈N . An ex post efficient trading mechanism
exists only if

l̃≥ n− 1

n
G.

Moreover, assume Vi = [v, v] and Fi = F for all i ∈N , then l̃ increases in n and converges to
v when n goes to infinity.

The most important feature of Proposition 4 is the fact that l̃ increases in the number of
agents and eventually reaches the upper bound of the support of valuations in the limit case. It
means that having more participants in the trading mechanism increases the pressure on each
agent with respect to their minimal liquidity resources requirement.

In my opinion, the main message of Proposition 4 is that ignoring the presence of liquidity
constraints in trading environments with multi-sided asymmetric information seems unjustified
if the market size is assumed to be large. In other words, one should be careful when studying
the properties of such environments as liquidity requirements seem to be at odds with the
standard intuition that a larger market size is unambiguously beneficial.

Indeed, it is standard that in the absence of liquidity constraints, a larger number of partici-
pants favors the existence of efficient trading mechanisms through (i) an increase in competition
among them and thus lowers each agent’s informational rent; and (ii) larger expected gains from
trade as the expected highest valuation increases when more agents participate. Proposition 4,
however, suggests that having too many participants can compromise the existence of efficient
trading mechanisms: the benefits on gains from trade mentioned in (ii) directly lead to a larger
ex ante deficit induced by the incentive compatibility constraints which translates into larger
liquidity requirements.

Notice also that adding new agents with large or unlimited liquidity resources to the trading
mechanism is of no help in the symmetric liquidity resources case. Worse still, their arrival
weighs on the liquidity requirements of the original set of participants. The existence of an

16Recall that G := Eg(v) corresponds to the expectation of the maximum of the random variables (v1, . . . , vn)
which is naturally increasing in n for any distributions of valuations.



ASYMMETRIC INFORMATION, LIQUIDITY CONSTRAINTS, AND EFFICIENT TRADE 13

efficient trading mechanism therefore relies critically upon the liquidity constraint of the most
liquidity-constrained agent – that is less likely to hold as the number of participants increases.

To illustrate these ideas, I now present a simple example.

EXAMPLE 3: Consider the case of a single seller, i = 1, facing n− 1 potential buyers de-
noted by i = 2, . . . , n. The seller has valuation v1 ∈ [0, c] for the good they own and buyers
have valuations vi ∈ [0,1] for all i ∈N \ {1}. Valuations are uniformly and independently dis-
tributed on their respective support and c ∈ [0,1]. To account for the seller’s full ownership of
the good, the trading environment can be seen as a n-agent partnership (see Section 4) with
initial ownership shares r1 = 1 and ri = 0 for all i ∈N \ {1}. This framework is an extension
of Myerson and Satterthwaite (1983) with multiple buyers as first introduced by Makowski and
Mezzetti (1993). I further assume that each agent has limited liquidity resources li ∈R+.

As previously mentioned, the existence condition (11) of Corollary 1 applies as a neces-
sary condition also in the case of asymmetric supports for distributions of valuations. A nec-
essary condition for existence of a trading mechanism in this environment therefore writes
min{C1(1), l1}+

∑n

i=2min{Ci(0), li} ≥ (n− 1)G.
It is straightforward to compute G= n−1

n
+ cn

n(n+1)
.17 Then, equation (10) defines the worst-

off types of the seller and the buyers, that is, v∗1(1) = c and v∗i (0) = 0 for all i ∈ N \ {1}.
The maximal non-distortionary charges due to individual rationality constraints follow from
equation (9):

C1(1) =
n− 1

n
− c+

cn

n
,

Ci(0) =
n− 2

n− 1
+

cn−1

n(n− 1)
for any i ∈N \ {1}.

First, ignore liquidity constraints so that a necessary condition for existence simply writes
C1(1) +

∑n

i=2Ci(0) ≥ (n− 1)G. The case n = 2 corresponds to Myerson and Satterthwaite
(1983)’s impossibility result as the condition requires c ≥ 3/2, contradicting the assumption
that c≤ 1. For n≥ 3, it is possible to show that there exists a n∗(c) such that for any c ∈ [0,1],
the necessary condition without liquidity constraints is satisfied for all n≥ n∗(c).18 The thresh-
old n∗(c) is increasing in c, that is, if the seller values the good more, there must be more
potential buyers for the condition to be satisfied.

Consider now that the potential buyers have limited liquidity resources, li = l̃ ∈ R+ for all
i ∈ N \ {1} such that l̃ ≤ Ci(0).19 The seller, however, is assumed to have unlimited liquid-
ity resources, i.e, l1 =+∞. In this environment, a necessary condition for the existence of an
efficient trading mechanism is C1(1) + (n− 1)l̃≥ (n− 1)G, or, after straightforward compu-
tations:

l̃≥ n− 2

n
+

c

n− 1
− 2cn

n(n− 1)(n+ 1)
. (12)

17The joint cumulative distribution functions write F−1(y) = yn−1 and F−i(y) = yn−2
(
y

c

)1{y<c} for all
i ∈N \ {1} with support on [aj , bj ] = [0,1] for all j ∈N .

18Makowski and Mezzetti (1993) provide a treatment of the case without liquidity constraints in the same environ-
ment and characterize a threshold c∗(n). I instead rely on the converse threshold n∗ := (c∗)−1 for the purposes of
the analysis.

19Notice that when c is close to zero, Ci(0)≈ 3
4
, 5
6
, 6
7
, 7
8

for n= 5,6,7,8, respectively. Recall that v = 1 in this
framework so that the condition l̃≤Ci(0) is not extremely restrictive.
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To focus on one of the most favorable environment for the existence of trading mechanisms,
assume that c is arbitrarily close to zero.20 The following table reports the minimal value of l̃
depending on the number of potential buyers for equation (12) to be satisfied.

# of buyers 1 2 3 4 5 6 7 8 9

l̃ 0 .33 .50 .60 .66 .71 .75 .77 .80

In line with Proposition 4, the minimal liquidity requirement is increasing in the number of
agents participating in the trading mechanism. More importantly, recall that buyers’ valuations
have support on [0,1] meaning that with three buyers the minimal liquidity requirement must
equal half the maximal possible valuation, about two-thirds with five buyers, and three-quarters
with seven buyers.

This example immediately contradicts the intuition that having more buyers is unambigu-
ously beneficial. Additional buyers increase the likelihood of high realizations of valuations
which in turn increases the ex ante expected cost of a Groves mechanism to reveal agents’
private information. As this cost must be somehow financed by the agents through transfers,
the largest payments that agents may have to make increase as well and so are their minimal
liquidity requirements.

6. LIQUIDITY-CONSTRAINED EFFICIENT AUCTION

Whenever condition (3) is satisfied, ex post efficient trading mechanisms can be implemented
by an auction. Let b := (b1, . . . , bn) ∈Rn

+ denote the vector of bids submitted by the n partici-
pants and U0 := (U0

1 , . . . ,U
0
n) be the vector of agents’ interim outside options.21

PROPOSITION 5: Let Fi = F , Vi = [v, v] for all i ∈N and assume condition (3) holds. The
bidding game in which agents bid b ∈Rn

+, the highest bidder receives the good, agent i pays a
price

pi(b) :=

{
(n− 1)

[
bi +

1
n
v
]

if bi ≥maxk bk
−
[
bj +

1
n
v
]

if bj ≥maxk bk,

and receives a side payment

ϕi(U
0, l) :=

1

n

∑
j∈N

min{Cj(U
0
j ), lj} −min{Ci(U

0
i ), li},

ensures an ex post efficient allocation (EF), and satisfies IIR, EPBB, and EPLC.

In this auction, the highest bidder simply pays every other agents her bid (modulo the term
1
n
v). Side payments ensure IIRR and EPLC. It is easy to see that the auction is ex post bud-

get balanced. Finally, ex post efficiency follows from the fact that pi(b) induces increasing
equilibrium bidding strategies bi(vi) for all i ∈N (see the Appendix for details).

20It is easy to show that the right-hand side of (12) is increasing in c so that the case c→ 0 corresponds to the less
demanding scenario in terms of liquidity resources.

21Recall that U0
i : Vi → R+ is defined as U0

i (vi) := E−iu0
i (vi, v−i) for all i ∈N .
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The important feature of the pricing rule is that, at equilibrium, it makes agents bid over a

lower range of values than with other pricing rules therefore minimizing the need for too large

side payments. Concretely, equilibrium prices under pricing rule pi(b) have a range of size G

like the transfer rule (6) proposed in Section 3. As a comparison, the pricing rule proposed

by Cramton et al. (1987), p̃i(b) := bi − 1
n−1

∑
j ̸=i bj , induces equilibrium prices with a range

of size 2E[max
j ̸=i

vj ].22 This last pricing rule may fail to satisfy EPLC even when condition (3)

holds. It is also worth noting that the performance of each of these pricing rules with respect to

liquidity constraints depends on the number of participants in the auction.

To illustrate these results, suppose that valuations are uniformly distributed on the unit in-

terval, i.e., Fi(vi) = vi and Vi = [0,1] for all i ∈N . Figure 1a shows the equilibrium bidding

strategies associated with the pricing rules pi(b) (solid curve) and p̃i(b) (dashed curve). Fig-

ure 1b represents the equilibrium ranges of the two pricing rules evaluated at their respective

equilibrium bidding strategies.

As it can be seen on Figure 1a, the liquidity-constrained auction is inducing a decreasing

spread of equilibrium bids while the other auction makes this spread larger as the number of

agents increases. As a result, the effective price paid by bidders has a lower range under the

pricing rule pi(b) than under the pricing rule p̃i(b), and this range is much less affected by an

increase in the number of participants.

This example does not illustrate a new result but simply convey the same message as the

observations in Section 3 and 5 about the choice of the transfer rule and the market size, re-

spectively. As a matter of fact, the pricing rule pi(b) proposed in Proposition 5 mimics the

modified expected externality mechanism defined by equation (6). Hence, pi(b) belongs in the

class of pricing rules that minimize the agents’ need for liquidity resources and satisfies all

other constraints. The quite simple bidding game of Proposition 5 could therefore serve as a

useful basis for the implementation of ex post efficient auctions, especially when the number

of bidders is expected to be large.

22It is also naturally reminiscent of the transfer rule of the expected externality mechanism discussed in Section 3.
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FIGURE 1.—(a) Equilibrium bidding strategies of pricing rules pi(b) and p̃i(b) for some values of n; (b) Ranges
of pricing rules pi(b) and p̃i(b) evaluated at their respective equilibrium bidding strategy as n varies. Solid curves
correspond to pricing rule pi(b) and dashed curves to p̃i(b). Valuations are supposed to be uniformly distributed on
the unit interval.

7. CONCLUSION

This paper studied a trading model with asymmetric information and liquidity constraints. It
analyzed the conditions under which efficient trade is possible, and showed that the details of
the design of incentive compatibility constraints are crucial to accommodate the most severe
cases of liquidity constraints. The framework also raises the issue of the benefits of large mar-
kets – or with highly valued goods – in asymmetric information environments as it shows that
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an increase in the number of participants tends to increase the need for liquidity resources. As
the assumption that agents have no liquidity constraints is often made in these environments,
the interaction between asymmetric information, liquidity resources and market size is worth
further investigation.

APPENDIX

For convenience, I define the following notations. Let F−i(y) :=
∏

j ̸=iFj(y) and f−i :=

F ′
−i with support on [ai, bi] := [maxj ̸=i vj ,maxj ̸=i vj ]. Similarly, letFFF (y) :=

∏
i∈N Fi(y), and

fff :=FFF ′.

PROOF OF THEOREM 1 (NECESSITY): The proof of necessity of condition (3) extends the
result of Theorem 1 to asymmetric supports of valuations and to any feasible and interim in-
centive compatible allocation rule si : V → [0,1] with

∑
i∈N si(v)≤ 1. Consider any interim

incentive compatible mechanism (s, t), then the following inequalities must hold for any two
valuations vi, v̂i ∈ Vi,

Ui(vi)≥ viSi(v̂i) + Ti(v̂i)−U0
i (vi),

Ui(v̂i)≥ v̂iSi(vi) + Ti(vi)−U0
i (v̂i),

which in turn implies that

(vi − v̂i)Si(vi)≥ Ui(vi)−Ui(v̂i) +
(
U0

i (vi)−U0
i (v̂i)

)
≥ (vi − v̂i)Si(v̂i).

This inequality implies that Si(vi) must be nonincreasing and that Ui(vi) is absolutely
continuous and almost everywhere differentiable with derivative ∂Ui/∂vi(vi) = Si(vi) −
∂U0

i /∂vi(vi). Integrating this last equation over [v̂i, vi] gives that

Ui(vi) = Ui(v̂i) +

∫ vi

v̂i

(
Si(y)−

∂U0
i

∂vi
(y)

)
dy.

Standard computations show that the expected interim transfer rule writes as follows:

Ti(vi) = Ti(v̂i)−
∫ vi

v̂i

ydSi(y). (13)

Imposing IIR requires Ui(vi)≥ 0 for all i ∈N and vi ∈ Vi. It is equivalent to impose Ui(v
∗
i )≥

0 for all i ∈N where v∗i ∈ argminvi∈Vi
Ui(vi) represents agent i’s worst-off type. Expressed

in terms of interim transfers this yields:

Ti(v
∗
i )≥ U0

i (v
∗
i )− v∗i Si(v

∗
i ).

EPLC requires that ti(v) ≥ −li for all i ∈ N and v ∈ V which implies that Ti(vi) ≥ −li for
all i ∈N and vi ∈ Vi must hold. Clearly, Ti(vi) is a decreasing in vi so that it is sufficient to
satisfy Ti(vi)≥−li for all i ∈N , or equivalently,

Ti(v
∗
i )≥

∫ vi

v∗
i

ydSi(y)− li. (14)
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Hence, IIR and EPLC implies that interim transfers must satisfy

Ti(v
∗
i )≥max

{
U0

i (v
∗
i )− v∗i Si(v

∗
i ),

∫ vi

v∗
i

ydSi(y)− li

}
.

As EPBB requires that
∑

i∈N ti(v) = 0 for all i ∈ N and v ∈ V , it must be true that∑
i∈N EiTi(vi) = 0 for all vi ∈ Vi. Using this last equality and equation (13) for v̂i = v∗i yields

∑
i∈N

Ti(v
∗
i ) =

∑
i∈N

Ei

∫ vi

v∗
i

ydSi(y)

=
∑
i∈N

{∫ vi

v∗
i

(1− Fi(y))ydSi(y)−
∫ v∗

i

vi

yFi(y)dSi(y)

}
,

where the second line is obtained by changing the order of integration.
Summing equation (14) over all i ∈N and using the above result immediately gives that

∑
i∈N

{∫ vi

v∗
i

(1− Fi(y))ydSi(y)−
∫ v∗

i

vi

yFi(y)dSi(y)
}

≥
∑
i∈N

max
{
U0

i (v
∗
i )− v∗i Si(v

∗
i ),

∫ vi

v∗
i

ydSi(y)− li

}
,

which can be rewritten as follows:∑
i∈N

min
{
v∗i Si(v

∗
i )−U0

i (v
∗
i ), li −

∫ vi

v∗
i

ydSi(y)
}

≥
∑
i∈N

{∫ v∗
i

vi

yFi(y)dSi(y)−
∫ vi

v∗
i

(1− Fi(y))ydSi(y)

}
.

Now it is convenient to add the term
∫ vi

v∗
i
ydSi(y) on both sides and define Ci := v∗i Si(v

∗
i ) +∫ vi

v∗
i
ydSi(y)−U0

i (v
∗
i ), so that

∑
i∈N

min
{
Ci, li

}
≥
∑
i∈N

∫ vi

vi

yFi(y)dSi(y), (15)

which corresponds to the generalized version of the necessary condition (3).
To conclude the proof of the “only if” part, it only remains to prove that equation (15)

corresponds to condition (3) under the ex post efficient allocation rule and symmetric support
assumption Vi = [v, v] for i ∈N .

First, notice that in that case Si(vi) = F−i(vi) so that Ci = v∗i F−i(v
∗
i ) +

∫ vi

v∗
i
ydF−i(y) −

U0
i (v

∗
i ). Then, notice that equation (2) can be rewritten as

Ci := inf
vi∈Vi

{viF−i(vi) +

∫ vi

vi

ydF−i(y)−U0
i (vi)}.
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By payoff equivalence at the interim stage and as v∗i ∈ argminvi∈Vi
Ui(vi), it follows that

Ci =Ci.
Second, the right-hand side of (15) rewrites as follows:∑

i∈N

∫ v

v

yFi(y)dSi(y) =
∑
i∈N

∫ v

v

yFi(y)
∑
k ̸=i

fk(y)
F−i(y)

Fk(y)
dy

=
∑
i∈N

∑
k ̸=i

∫ v

v

yfk(y)F−k(y)dy

= (n− 1)
∑
i∈N

∫ v

v

yfi(y)F−i(y)dy

= (n− 1)

∫ v

v

yd
∏
i∈N

Fi(y)

= (n− 1)G,

which concludes the proof of the “only if” part. Q.E.D.

PROOF OF THEOREM 1 (SUFFICIENCY): The sufficiency of condition (3) is only proven in
the symmetric support case and under the ex post efficient allocation rule.

Consider the following ex post transfer rule:

ti(v) :=


−
∑

k ̸=iψk(vi)−
n− 1

n
v− ϕi if ρ(v) = i

ψi(vj) +
1

n
v− ϕi if ρ(v) = j ̸= i,

(16)

where ψk(vp) :=

∫
vp

v

∫ x

v
FFF (y)dy

FFF (x)

fk(x)

Fk(x)
dx and ϕi ∈R is a constant.

Before proceeding with the proof is it useful to show that

∑
i∈N

ψi(vp) =

∫ vp

v

∫ x

v
FFF (y)dy

FFF (x)

∑
i∈N

fi(x)

Fi(x)
dx

=−

[∫ x

v
FFF (y)dy

FFF (x)

]vp

v

+

∫ vp

v

dx

= vp −
∫ vp

v
FFF (y)dy

FFF (vp)
− v

=

∫ vp

v
ydFFF (y)

FFF (vp)
− v,

where the second line follows from integration by parts and L’Hôpital’s rule. In particular,
notice that

∑
i∈N ψi(v) =G− v.

Step 1 (Budget Balance). EPBB only requires that
∑

i∈N ϕi = 0 as all other terms cancel out
for any v ∈ V . This condition will be used in the last step of the proof.
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Step 2 (Liquidity constraints). EPLC requires minv∈V ti(v) ≥ −li for all i ∈ N . It is easy to
see that ti(v) as defined by equation (16) is always lower when ρ(v) = i, and in this case it is
minimized when vi = v as

∑
k ̸=iψk(vi) is increasing in vi. It follows that

min
v∈V

ti(v) =−
∑
k ̸=i

ψk(v)−
n− 1

n
v− ϕi

= ψi(v)−G+
1

n
v− ϕi,

which implies that EPLC is satisfied whenever,

ϕi ≤ li +ψi(v)−G+
1

n
v.

Step 3 (Individual rationality). The interim expected transfer, Ti(vi) = E−iti(v), writes as fol-
lows:

Ti(vi) =

∫ v

v

[(
−
∑
k ̸=i

ψk(vi)−
n− 1

n
v
)
1{vi > y}+

(
ψi(y) +

1

n
v
)
1{vi < y}

]
dF−i(y)− ϕi.

Using the above result on
∑

k∈N ψk(vi) and integrating by part the term
∫ v

v
ψi(y)dF−i(y)

yields

Ti(vi) = F−i(vi)
(
ψi(vi)−

∫ vi
v
ydFFF (y)

FFF (vi)
+

1

n
v
)
+ψi(v)−ψi(vi)F−i(vi)

−
∫ v

vi

∫ y

v

F (x)dx
fi(y)

Fi(y)
2 dy+ (1− F−i(y))

1

n
v− ϕi,

which simplifies to

Ti(vi) =−
∫ vi
v
ydFFF (y)

Fi(vi)
+ψi(v) +

∫ v

v

F (x)dx−
∫ vi
v
FFF (y)dy

Fi(vi)
−
∫ v

vi

F−i(y)dy+
1

n
v− ϕi

=

∫ v

vi

ydF−i(y) +ψi(v)−G+
1

n
v− ϕi.

IIR requires that Ti(v
∗
i ) ≥ U0

i (v
∗
i ) − v∗i F−i(v

∗
i ) where v∗i ∈ argminvi∈Vi

Ui(vi). With this
interim transfer rule it follows that

ϕi ≤Ci +ψi(v)−G+
1

n
v,

where Ci := v∗i F−i(v
∗
i ) +

∫ v

v∗
i
ydF−i(y)−U0

i (v
∗
i ).

Step 4 (Incentive compatibility). IIC is immediate as Ti(vi) =
∫ v

vi
ydF−i(y) + ψi(v) − G +

1
n
v− ϕi directly satisfies equation (13).
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Step 5 (Sufficiency). Putting together the EPLC and IRR conditions on ϕi yields

ϕi ≤min{Ci, li}+ψi(v)−G+
1

n
v, (17)

and EPBB requires that
∑

i∈N ϕi = 0.
Simply let

ϕi := min{Ci, li}+ψi(v)−G+
1

n
v− 1

n

[∑
j∈N

min{Cj , lj} − (n− 1)G

]
. (18)

As condition (3) holds, it is clear that the term in square brackets is nonnegative so that
ϕi satisfies condition (17), i.e., both EPLC and IIR. Finally, it is straightforward to see that∑

i∈N ϕi = 0 given the earlier result that
∑

i∈N ψi(v) =G− v. The transfer rule is therefore
also EPBB which concludes the proof of sufficiency. Q.E.D.

PROOF OF PROPOSITION 1: Starting with Proposition 1.a., assume that r̃i ≤ 1
n

for all
i ∈ N . Notice that maxr∈∆n−1

∑
i∈N Ci(ri) =

∑
i∈N Ci(

1
n
) and thus for all r ∈ ∆n−1,∑

i∈N min{Ci(ri), li} ≤
∑

i∈N Ci(
1
n
). It is then clear that choosing r∗i = 1

n
for all i ∈ N is

such that for each i ∈ N , min{Ci(r
∗
i ), li} = Ci(r

∗
i ) = Ci(

1
n
) provided that r∗i ≥ r̃i for all

i ∈N . Hence,
∑

i∈N min{Ci(ri), li}=
∑

i∈N Ci(
1
n
) which is the upper bound.

Consider now Proposition 1.b., i.e. assume that r̃i > 1
n

for some i ∈ N . Define L(r,λ) =∑
i∈N min{Ci(ri), li}+ λ(

∑
i∈N ri − 1) where λ ∈ R is the Lagrange multiplier associated

with the constraint
∑

i∈N ri = 1. Notice that
∑

i∈N min{Ci(ri), li} is concave as Ci(ri) is
concave for each i ∈N and differentiable everywhere except at ri = r̃i. Let δriL(r,λ) denote
the superdifferential of the Lagrangian in ri, then

δriL(r,λ) = λ+


0 if ri < r̃i
[C ′

i(r̃i),0] if ri = r̃i
C ′

i(ri) if ri > r̃i.

The necessary optimality condition writes 0 ∈ δriL(r,λ) for all i ∈N . First, assume that there
is at least one r∗j < r̃j . Then λ= 0 and ri > r̃i is impossible as it is impossible to have C ′

i(ri) =
0 with ri > r̃i (indeed C ′

i(ri) = 0 only occurs when v = 0 and ri = 0). But then, if all r∗i ≤
r̃i with one strict inequality at least, it follows that

∑
i∈N r

∗
i <

∑
i∈N r̃i ≤ 1 which is also

impossible. Therefore, it is necessary that ri ≥ r̃i for all i ∈N . Assume now that ri > r̃i for all
i ∈N . Then, the necessary optimality condition implies that λ+C ′

i(r
∗
i ) = 0 for all i ∈N . But

then it follows that r∗i =
1
n

for all i ∈N which is impossible as some r̃i > 1
n

contradicting that
r∗i > r̃i for all i ∈N .

Hence, the solution must be such r∗i ≥ r̃i for all i ∈N with at least one equality. Let A :=
{i ∈N | r∗i > r̃i} and B := {j ∈N | r∗j = r̃j}. Then, for all i ∈A, λ+C ′

i(r
∗
i ) = 0 implies that

λ > 0 and r∗i = r∗k for any two i,k ∈ A. For any i ∈ A, and let r∗i = r̂ with r̂ :=
1−

∑
j∈B r̃j

|A| .
As by assumption r̃1 ≤ · · · ≤ r̃n and for all i ∈ A it is necessary that r̂ > r̃i, it is possible
to rewrite A := {i ∈ N | i < p} and B := {j ∈ N | j ≥ p} for some p ∈ N \ {1} and r̂ =
1−

∑
j≥pr̃j

p−1
. It is also necessary that r̂ ≤ r̃j for all j ∈ B. The solution therefore writes r∗ =

(r̂, r̂, . . . , r̂, r̃p, r̃p+1, . . . , r̃n) and maxi<p r̃i < r̂ ≤minj≥p r̃j . Q.E.D.
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PROOF OF PROPOSITION 2: First, notice the following upper bound on the sum of col-
lectible charges:

∑
i∈N min{Ci(ri), li} ≤

∑
i∈N min{Ci(0), li} for all r ∈ ∆n−1. For ev-

ery i ∈ N , let ri ≤ r̃i which is always possible as
∑

i∈N ri = 1 <
∑

i∈N r̃i. It fol-
lows that min{Ci(ri), li} = min{Ci(0), li} for all i ∈ N and

∑
i∈N min{Ci(ri), li} =∑

i∈N min{Ci(0), li}. To conclude, it is clear that choosing any ri > r̃i would decrease∑
i∈N min{Ci(ri), li}. Q.E.D.

PROOF OF PROPOSITION 3: First notice that
∑

i∈N min{Ci(ri), li} ≤
∑

i∈N Ci(ri) and∑
i∈N Ci(ri) ≤

∑
i∈N Ci(1/n) where the second inequality follows from the optimality of

equal-share ownership in the absence of liquidity constraints (Proposition 1.a). Similarly∑
i∈N min{Ci(ri), li} ≤ L. Hence, it is clear that

∑
i∈N min{Ci(ri), li} ≤

∑
i∈N min{Ci(1/n),L}

is an upper bound of the maximal collectible charges. Which of these bound is attained depends
on the aggregate level of liquidity.

First, consider the case L≥
∑

i∈N Ci(1/n). It is always possible to construct l∗ ∈ Rn
+ such

that l∗i ≥ Ci(1/n) for all i ∈ N and
∑

i∈N l
∗
i = L. Similarly, let r∗i = 1/n for all i ∈ N . It

immediately follows that
∑

i∈N min{Ci(r
∗
i ), l

∗
i }=

∑
i∈N Ci(1/n).

Second, consider the case L <
∑

i∈N Ci(1/n). It is clear that now
∑

i∈N Ci(1/n) is not
attainable as the previous distribution of liquidity is not feasible. Simply let r∗i = 1/n for all
i ∈ N and it is possible to let l∗i < Ci(1/n) for all i ∈ N such that

∑
i∈N l

∗
i = L. Hence,∑

i∈N min{Ci(r
∗
i ), l

∗
i }=

∑
i∈N l

∗
i = L. Q.E.D.

PROOF OF PROPOSITION 4: From condition (3) it is immediate that an ex post trading
mechanism exists only if

∑
i∈N li ≥ (n− 1)G. From the assumption that li = l̃ for all i ∈N

this condition rewrites l̃≥ n−1
n
G.

Now, assume that Vi = [v, v] and Fi = F . For convenience let G(n) = =
∫ v

v
ydF (y)n be

the expected gains from trade when n agents participate. As F (y)n+1 first-order stochastically
dominates F (y)n, it is clear that G(n+1)−G(n)≥ 0. It immediately follows that l̃ is increas-
ing in n as n−1

n
G(n) is also increasing in n.

Finally, notice that G(n) = v −
∫ v

v
F (y)ndy after integration by parts. By the monotone

convergence theorem, G(n) converges to v when n converges to +∞. It follows that n−1
n
G(n)

converges to v as well. Q.E.D.

PROOF OF PROPOSITION 5: Let bi be agent i’s bidding strategy and b(vj) be the bidding
strategy of agent j ̸= i with valuation vj . Agent i’s interim expected utility (omitting side
payments) when bidding bi writes

Ui(bi;vi) :=

[
vi − (n− 1)(bi +

1

n
v)

]
E−i1{bi >max

k ̸=i
b(vk)}

+
∑
j ̸=i

E−i

[
1{b(vj)> bi}1{b(vj)>max

k ̸=i,j
b(vk)}

[
b(vj) +

1

n
v

]]
.

Solving for a strictly increasing symmetric Bayesian equilibrium, the bidding strategy
of agent j ̸= i players, b(vj), is strictly increasing and therefore invertible. Notice that
1{bi > maxk ̸=i b(vk)} = 1{b−1(bi) > maxk ̸=i vk} and 1{b(vj) > maxk ̸=i b(vk)} = 1{vj >
maxk ̸=i vk}. It follows that agent i’s interim expected utility rewrites

Ui(bi;vi) =
[
vi − (n− 1)(bi +

1

n
v)
]
Z(b−1(bi)) +

∫ v

b−1(bi)

[
b(vj) +

1

n
v
]
dZ(vj),
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where Z := Fn−1. Let z = Z ′, differentiating U(bi;vi) with respect to bi and simplifying using
∂b−1

∂bi
(bi) =

1
b′(b−1(bi))

gives

∂Ui

∂bi
(bi;vi) =−(n− 1)Z(b−1(bi)) +

z(b−1(bi))

b′(b−1(bi))

[
vi − nbi − v

]
.

At equilibrium, b(vi) must be such that ∂Ui

∂bi
(b(vi);vi) = 0. Therefore, b(vi) must solve

−(n− 1)Z(vi) +
z(vi)

b′(vi)

[
vi − nb(vi)− v

]
= 0.

It is easy to show that b(vi) :=
∫ vi
v

∫ t

v
F (s)nds

F (t)n+1
f(t)dt solves this first-order differential equa-

tion and is strictly increasing in vi. This first-order condition is also sufficient. First, notice
from the first-order condition that b′(vi) =

f(vi)

F (vi)
(vi − nb(vi) − v). Assume that instead of

b(vi), agent i of type vi bids b(x) where x ∈ Vi, then

∂Ui

∂bi
(b(x);vi) = (n− 1)Z(x)

[
−1 +

f(x)

b′(x)F (x)
[vi − nb(x)− v]

]
= (n− 1)Z(x)

[
−1 +

vi − nb(x)− v

x− nb(x)− v

]
.

Hence, as b(x) is increasing in x, it follows that ∂Ui

∂bi
(b(x);vi) > 0 (resp. < 0) when x < vi

(resp. x > vi) for any vi ∈ Vi and x ̸= vi.
At the Bayesian equilibrium, agent i pays a price

pi(b(v1), . . . , b(vn)) =


(n− 1)

[∫ vi
v

∫ t

v
F (s)nds

F (t)n+1
f(t)dt+ 1

n
v

]
if bi ≥maxk bk

−

[∫ vj
v

∫ t

v
F (s)nds

F (t)n+1
f(t)dt+ 1

n
v

]
if bj ≥maxk bk.

It is immediate to see that this price rule corresponds to the ex post transfer rule defined by
equation (16) in the symmetric distribution case (and omitting the constant term). It can easily
be proven that ϕi(U

0, l) replicates the constant term defined by equation (18) after noticing
that ψi(v) =

1
n
[G− v] in the symmetric distribution case.

The bidding game is thus EF as b(·) is increasing, i.e., the bidder with the highest valuation
obtains the good. It is also IIR, EPBB and EPCC as it reproduces the transfer rule defined in
equation (18). Q.E.D.
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