ASYMMETRIC INFORMATION, LIQUIDITY CONSTRAINTS, AND EFFICIENT TRADE

Guillaume Pommey Tor Vergata University of Rome

Conference in Mechanism Design, Budapest

June 12, 2024

Consider the problem of efficiently (re)allocating a good/asset among n agents (e.g. public project, natural resource).

Usual challenges: Reveal information and ensure voluntary participation.

Overlooked challenge: Ensure feasibility of payments.

Agents may be financially constrained.

Consider the problem of efficiently (re)allocating a good/asset among n agents (e.g. public project, natural resource).

Usual challenges: Reveal information and ensure voluntary participation.

Overlooked challenge: Ensure feasibility of payments.

Agents may be financially constrained.

Consider the problem of efficiently (re)allocating a good/asset among n agents (e.g. public project, natural resource).

Usual challenges: Reveal information and ensure voluntary participation.

Overlooked challenge: Ensure feasibility of payments.

Agents may be financially constrained.

Revealing private information is usually done by letting agents freely pick an option in a price schedule.

We want that agents with **different valuations choose different options.**

Revealing private information is usually done by letting agents freely pick an option in a price schedule.

We want that agents with **different valuations choose different options**.

Revealing private information is usually done by letting agents freely pick an option in a price schedule.

We want that agents with **different valuations choose different options**.

Revealing private information is usually done by letting agents freely pick an option in a price schedule.

We want that agents with **different valuations choose different options**.

Revealing private information is usually done by letting agents freely pick an option in a price schedule.

We want that agents with **different valuations choose different options**.

Revealing private information is usually done by letting agents freely pick an option in a price schedule.

We want that agents with **different valuations choose different options**.

Revealing private information is usually done by letting agents freely pick an option in a price schedule.

We want that agents with **different valuations choose different options**.

Centralized markets

When designing **centralized markets**, there is some leeway in dealing with the liquidity problem.

We can **subsidize the most liquidity-constrained agents** with the resources of the least liquidity-constrained ones.

Lump-sum transfers.

Possible until it conflicts with voluntary participation.

In general, only a partial solution and **fails to address the most** constrained cases.

- The design of the IC constraints is crucial here.
- A *better* design reduces the need for lump-sum transfers.

Centralized markets

When designing **centralized markets**, there is some leeway in dealing with the liquidity problem.

We can **subsidize the most liquidity-constrained agents** with the resources of the least liquidity-constrained ones.

- Lump-sum transfers.
- Possible until it conflicts with voluntary participation.

In general, only a partial solution and fails to address the most constrained cases.

- The design of the IC constraints is crucial here.
- A *better* design reduces the need for lump-sum transfers.

Centralized markets

When designing **centralized markets**, there is some leeway in dealing with the liquidity problem.

We can **subsidize the most liquidity-constrained agents** with the resources of the least liquidity-constrained ones.

- Lump-sum transfers.
- Possible until it conflicts with voluntary participation.

In general, only a partial solution and fails to address the most constrained cases.

- The design of the IC constraints is crucial here.
- A *better* design reduces the need for lump-sum transfers.

A set $N := \{1, \ldots, n\}$ of agents, **privately informed** about $v_i \in V_i$.

Agents have **liquidity resources** $I := (I_1, \ldots, I_n) \in \mathbb{R}^n_+$.

Each agent has **outside option**: $u_i^0 : V \to \mathbb{R}$, where $V = \times_{i \in N} V_i$.

$$v_i s_i + t_i - u_i^0$$
.

A set $N := \{1, \ldots, n\}$ of agents, **privately informed** about $v_i \in V_i$.

Agents have liquidity resources $l := (l_1, \ldots, l_n) \in \mathbb{R}^n_+$.

Each agent has **outside option**: $u_i^0 : V \to \mathbb{R}$, where $V = \times_{i \in \mathbb{N}} V_i$.

$$v_i s_i + t_i - u_i^0$$
.

A set $N := \{1, \ldots, n\}$ of agents, **privately informed** about $v_i \in V_i$.

Agents have **liquidity resources** $I := (I_1, \ldots, I_n) \in \mathbb{R}^n_+$.

Each agent has **outside option**: $u_i^0 : V \to \mathbb{R}$, where $V = \times_{i \in \mathbb{N}} V_i$.

$$v_i s_i + t_i - u_i^0$$
.

A set $N := \{1, \ldots, n\}$ of agents, **privately informed** about $v_i \in V_i$.

Agents have **liquidity resources** $I := (I_1, \ldots, I_n) \in \mathbb{R}^n_+$.

Each agent has **outside option**: $u_i^0 : V \to \mathbb{R}$, where $V = \times_{i \in N} V_i$.

$$v_i s_i + t_i - u_i^0.$$

(re)Allocation mechanisms

A mechanism is a pair $(s, t) := (s_1, \ldots, s_n, t_1, \ldots, t_n)$ where,

Allocation rule: $s_i : V \to [0, 1]$, Transfer rule: $t_i : V \to \mathbb{R}$.

A mechanism is (ex post) **efficient** when $s_i(v) = \mathbb{1}\{v_i = \max_j v_j\}$.

Simple questions:

- 1. Under which conditions an efficient mechanism exists?
- 2. What do they look?
- 3. How features of the environment such as market size or initial ownership affect them?

(re)Allocation mechanisms

A mechanism is a pair $(s, t) := (s_1, \ldots, s_n, t_1, \ldots, t_n)$ where,

Allocation rule: $s_i : V \to [0, 1]$, Transfer rule: $t_i : V \to \mathbb{R}$.

A mechanism is (ex post) efficient when $s_i(v) = \mathbb{1}\{v_i = \max_j v_j\}$.

Simple questions:

- 1. Under which conditions an efficient mechanism exists?
- 2. What do they look?
- 3. How features of the environment such as market size or initial ownership affect them?

(re)Allocation mechanisms

A mechanism is a pair $(s, t) := (s_1, \ldots, s_n, t_1, \ldots, t_n)$ where,

A mechanism is (ex post) efficient when $s_i(v) = \mathbb{1}\{v_i = \max_j v_j\}$.

Simple questions:

- 1. Under which conditions an efficient mechanism exists?
- 2. What do they look?
- 3. How features of the environment such as market size or initial ownership affect them?

An (oversimplified) example

n agents, v_i 's iid $\mathcal{U}[0, 1]$.

Assume that we can choose between:

- second-price auction;
- ▶ first-price auction.

In both cases

- 1. Full revelation of information;
- 2. The allocation is efficient;
- 3. Same interim expected payments (revenue equivalence theorem).

An (oversimplified) example

n agents, v_i 's iid $\mathcal{U}[0, 1]$.

Assume that we can choose between:

- second-price auction;
- first-price auction.

In both cases

- 1. Full revelation of information;
- 2. The allocation is efficient;
- 3. Same interim expected payments (revenue equivalence theorem).

An (oversimplified) example

n agents, v_i 's iid $\mathcal{U}[0,1]$.

Assume that we can choose between:

- second-price auction;
- first-price auction.

In both cases

- 1. Full revelation of information;
- 2. The allocation is efficient;
- 3. Same interim expected payments (revenue equivalence theorem).

Example: Bidding strategies

What differs between the two auctions are the **bidding strategies**.

At equilibrium:

$$\beta_S(v_i) = v_i$$

$$\beta_F(v_i) = \frac{n-1}{n}v_i$$

Clearly,

 $eta_S(v_i) \in [0,1]$ $eta_F(v_i) \in [0,rac{n-1}{n}]$

Example: Bidding strategies

What differs between the two auctions are the **bidding strategies**.

At equilibrium:

$$\beta_{S}(v_{i}) = v_{i}$$

$$\beta_{F}(v_{i}) = \frac{n-1}{n}v_{i}$$

Clearly,

 $\beta_S(v_i) \in [0,1]$ $\beta_F(v_i) \in [0,\frac{n-1}{n}]$

Example: Bidding strategies

What differs between the two auctions are the **bidding strategies**.

At equilibrium:

$$\beta_{S}(v_{i}) = v_{i}$$

$$\beta_{F}(v_{i}) = \frac{n-1}{n}v_{i}$$

Clearly,

 $\beta_{S}(v_{i}) \in [0, 1]$ $\beta_{F}(v_{i}) \in [0, \frac{n-1}{n}]$

When can we be sure that any type $v_i \in [0, 1]$ can submit a bid **they can** actually afford?

Assume n = 2. $l_i \in \mathbb{R}_+$: agent *i*'s liquidity. We have, $\beta_S(v_i) \in [0, 1]$ $\beta_F(v_i) \in [0, \frac{1}{2}]$ 0.5

When can we be sure that any type $v_i \in [0, 1]$ can submit a bid **they can** actually afford?

Assume n = 2. $l_i \in \mathbb{R}_+$: agent *i*'s liquidity. We have, $\beta_S(v_i) \in [0, 1]$ $\beta_F(v_i) \in [0, \frac{1}{2}]$ 0.5

When can we be sure that any type $v_i \in [0, 1]$ can submit a bid **they can** actually afford?

Assume n = 2. $l_i \in \mathbb{R}_+$: agent *i*'s liquidity. We have, $\beta_S(v_i) \in [0, 1]$ $\beta_F(v_i) \in [0, \frac{1}{2}]$

Assume that a designer could enforce **any ex ante redistribution** of liquidity between agents.

Assume that a designer could enforce **any ex ante redistribution** of liquidity between agents.

Example: Takeaway #1

Different (efficient) incentive compatible mechanisms require different levels of individual liquidity.

SPA is more demanding than FPA.

Ex ante redistribution of liquidity alleviates the problem.

- ▶ More *effective* in FPA than in SPA.
- Lower aggregate liquidity needed in FPA.
- ► Hence the choice of IC mechanism matters.

Example: Takeaway #1

Different (efficient) incentive compatible mechanisms require different levels of individual liquidity.

SPA is more demanding than FPA.

Ex ante redistribution of liquidity alleviates the problem.

- ▶ More *effective* in FPA than in SPA.
- Lower aggregate liquidity needed in FPA.
- Hence the choice of IC mechanism matters.

The **number of participants** can also affect the liquidity requirement of a mechanism.

Recall that when $n \ge 2$: $\beta_F(v_i) = \frac{n-1}{n}v_i$: increasing in n. $\beta_S(v_i) = v_i$

Hence, more bidders in FPA \Rightarrow increases individual liquidity requirements.

The **number of participants** can also affect the liquidity requirement of a mechanism.

Recall that when $n \ge 2$:

Hence, more bidders in FPA \Rightarrow increases individual liquidity requirements.

The **number of participants** can also affect the liquidity requirement of a mechanism.

Recall that when $n \ge 2$:

Hence, more bidders in FPA \Rightarrow increases individual liquidity requirements.

The **number of participants** can also affect the liquidity requirement of a mechanism.

Recall that when $n \ge 2$:

Hence, more bidders in FPA \Rightarrow increases individual liquidity requirements.

More participants make liquidity requirements stronger.

When $n = \infty$, both auctions impose $l_i \ge 1$ for i = 1, 2.

▶ 1 is is the largest possible valuation as $v_i \in [0, 1]$.

More participants make liquidity requirements stronger.

When $n = \infty$, both auctions impose $l_i \ge 1$ for i = 1, 2.

▶ 1 is is the largest possible valuation as $v_i \in [0, 1]$.

What's missing, what's next?

What is **omitted** in the example? Pretty much everything.

- Focus on two particular mechanisms;
- Unrestricted redistribution of liquidity;
- No participation constraints/outside option;
- Unbalanced transfers.

But all the previous intuitions hold in the general trading environment.

What's missing, what's next?

What is **omitted** in the example? Pretty much everything.

- Focus on two particular mechanisms;
- Unrestricted redistribution of liquidity;
- No participation constraints/outside option;
- Unbalanced transfers.

But all the previous intuitions hold in the general trading environment.

What's missing, what's next?

What is **omitted** in the example? Pretty much everything.

- Focus on two particular mechanisms;
- Unrestricted redistribution of liquidity;
- No participation constraints/outside option;
- Unbalanced transfers.

But all the previous intuitions hold in the general trading environment.

Optimal auctions with liquidity constraints: Laffont and Robert (1996), Malakhov and Vohra (2008), Boulatov and Severinov (2021).

FPA with private budgets: Kotowski (2020), Bobkova (2020).

Allocation problems with two-sided private information: Myerson and Satterthwaite (1983), Cramton et al. (1987), Loertscher et al. (2015), Loertscher and Wasser (2019).

Back to the general environment

We want to impose four constraints on our mechanisms:

- 1. Incentive compatibility: $U_i(v_i) \ge U_i(\hat{v}_i; v_i)$
- 2. Liquidity constraints: $t_i(v) \ge -l_i$
- 3. Participation constraints: $U_i(v_i) \ge 0$
- 4. Budget balance: $\sum_{i} t_i(v) = 0$.

IC and participation are interim.

Liquidity and BB are ex post.

How to set transfers to satisfy IC, participation and BB?

Usual candidate: Expected externality mechanism.

$$ilde{t}_i(\mathbf{v}) := ilde{arphi}_i(\mathbf{v}) - rac{1}{n-1}\sum_{j
eq i} ilde{arphi}_j(\mathbf{v}) + ilde{\phi}_i,$$

where
$$\tilde{\varphi}_i(v) := \mathbb{E}_{-i} \sum_{j \neq i} v_j s_j^*(v)$$
 and $\sum_{i \in N} \tilde{\phi}_i = 0$.

This transfer rule has range $2\mathbb{E}[\max_{j\neq i} v_j]$.

How to set transfers to satisfy IC, participation and BB?

Usual candidate: Expected externality mechanism.

$$\tilde{t}_i(v) := \tilde{\varphi}_i(v) - \frac{1}{n-1} \sum_{j \neq i} \tilde{\varphi}_j(v) + \tilde{\phi}_i,$$

where $\tilde{\varphi}_i(v) := \mathbb{E}_{-i} \sum_{j \neq i} v_j s_j^*(v)$ and $\sum_{i \in N} \tilde{\phi}_i = 0$.

This transfer rule has range $2\mathbb{E}[\max_{j\neq i} v_j]$.

How to set transfers to satisfy IC, participation and BB?

Usual candidate: Expected externality mechanism.

$$ilde{t}_i(oldsymbol{v}) := ilde{arphi}_i(oldsymbol{v}) - rac{1}{n-1}\sum_{j
eq i} ilde{arphi}_j(oldsymbol{v}) + ilde{\phi}_i,$$

where
$$\tilde{\varphi}_i(v) := \mathbb{E}_{-i} \sum_{j \neq i} v_j s_j^*(v)$$
 and $\sum_{i \in N} \tilde{\phi}_i = 0$.

This transfer rule has range $2\mathbb{E}[\max_{j\neq i} v_j]$.

How to set transfers to satisfy IC, participation and BB?

Usual candidate: Expected externality mechanism.

$$ilde{t}_i({m v}) := ilde{arphi}_i({m v}) - rac{1}{n-1}\sum_{j
eq i} ilde{arphi}_j({m v}) + ilde{\phi}_i,$$

where $\tilde{\varphi}_i(v) := \mathbb{E}_{-i} \sum_{j \neq i} v_j s_j^*(v)$ and $\sum_{i \in N} \tilde{\phi}_i = 0$.

This transfer rule has range $2\mathbb{E}[\max_{j\neq i} v_j]$.

How to set transfers to satisfy IC, participation and BB?

Usual candidate: Expected externality mechanism.

$$ilde{t}_i({m v}) := ilde{arphi}_i({m v}) - rac{1}{n-1}\sum_{j
eq i} ilde{arphi}_j({m v}) + ilde{\phi}_i,$$

where $\tilde{\varphi}_i(v) := \mathbb{E}_{-i} \sum_{j \neq i} v_j s_j^*(v)$ and $\sum_{i \in N} \tilde{\phi}_i = 0$.

This transfer rule has range $2\mathbb{E}[\max_{j\neq i} v_j]$.

Consider the following modified expected externality mechanism:

$$t_i(\mathbf{v}) := \varphi_i(\mathbf{v}) - rac{1}{n-1} \sum_{j \neq i} \varphi_j(\mathbf{v}) + \phi_i,$$

where $\sum_{i \in N} \phi_i = 0$, and

$$\varphi_i(v) := rac{n-1}{n} \sum_{j \neq i} \mathbb{E}[\max_j \tilde{v}_j \mid \max_j \tilde{v}_j \leq v_j] s_j^*(v).$$

Still satisfies IC, participation and BB.

Has range of $\mathbb{E} \max_{j} v_j \leq 2\mathbb{E} [\max_{j \neq i} v_j]$.

Consider the following modified expected externality mechanism:

$$t_i(\mathbf{v}) := \varphi_i(\mathbf{v}) - rac{1}{n-1} \sum_{j \neq i} \varphi_j(\mathbf{v}) + \phi_i,$$

where $\sum_{i \in N} \phi_i = 0$, and

$$\varphi_i(\mathbf{v}) := rac{n-1}{n} \sum_{j \neq i} \mathbb{E}[\max_j \tilde{v}_j \mid \max_j \tilde{v}_j \leq v_j] s_j^*(\mathbf{v}).$$

Still satisfies IC, participation and BB.

Has range of $\mathbb{E} \max_{j} v_j \leq 2\mathbb{E} [\max_{j \neq i} v_j]$.

Consider the following modified expected externality mechanism:

$$t_i(\mathbf{v}) := \varphi_i(\mathbf{v}) - rac{1}{n-1} \sum_{j \neq i} \varphi_j(\mathbf{v}) + \phi_i,$$

where $\sum_{i \in N} \phi_i = 0$, and

$$\varphi_i(\mathbf{v}) := rac{n-1}{n} \sum_{j \neq i} \mathbb{E}[\max_j \tilde{v}_j \mid \max_j \tilde{v}_j \leq v_j] s_j^*(\mathbf{v}).$$

Still satisfies IC, participation and BB.

Has range of $\mathbb{E} \max_{j \neq i} v_j \leq 2\mathbb{E}[\max_{j \neq i} v_j]$.

Asymmetric information, liquidity constraints, and efficient trade

Consider the following modified expected externality mechanism:

$$t_i(\mathbf{v}) := \varphi_i(\mathbf{v}) - rac{1}{n-1} \sum_{j \neq i} \varphi_j(\mathbf{v}) + \phi_i,$$

where $\sum_{i \in N} \phi_i = 0$, and

$$\varphi_i(\mathbf{v}) := rac{n-1}{n} \sum_{j \neq i} \mathbb{E}[\max_j \tilde{v}_j \mid \max_j \tilde{v}_j \leq v_j] s_j^*(\mathbf{v}).$$

Still satisfies IC, participation and BB.

Has range of $\mathbb{E} \max_{j} v_j \leq 2\mathbb{E} [\max_{j \neq i} v_j]$.

The existence condition

Define $g(v) = \max_j v_j$ and $C_i := \inf_{v_i \in V_i} \{\mathbb{E}_{-i}g(v) - U_i^0(v_i)\}.$

THEOREM 1. An efficient mechanism satisfying incentive compatibility, liquidity, participation and budget balance constraints exists **if and only if**

$$\sum_{i\in\mathbb{N}}\min\left\{C_i,l_i\right\}\geq (n-1)\mathbb{E}g(v).$$

The modified EEM always works under this condition.

Means that it has the lowest possible range.

The existence condition

Define
$$g(v) = \max_j v_j$$
 and $C_i := \inf_{v_i \in V_i} \{\mathbb{E}_{-i}g(v) - U_i^0(v_i)\}$.

THEOREM 1. An efficient mechanism satisfying incentive compatibility, liquidity, participation and budget balance constraints exists **if and only if**

$$\sum_{i\in\mathbb{N}}\min\left\{C_i,I_i\right\}\geq (n-1)\mathbb{E}g(\nu).$$

The modified EEM always works under this condition.

Means that it has the lowest possible range.

The existence condition

Define
$$g(v) = \max_j v_j$$
 and $C_i := \inf_{v_i \in V_i} \{\mathbb{E}_{-i}g(v) - U_i^0(v_i)\}$.

THEOREM 1. An efficient mechanism satisfying incentive compatibility, liquidity, participation and budget balance constraints exists **if and only if**

$$\sum_{i\in\mathbb{N}}\min\{C_i,l_i\}\geq (n-1)\mathbb{E}g(\nu).$$

The modified EEM always works under this condition.

Means that it has the lowest possible range.

A liquidity-constrained auction

Let $F_i = F$, $V_i = [0, \overline{v}]$, and let $b := (b_1, \dots, b_n) \in \mathbb{R}^n_+$.

PROPOSITION 1. The liquidity-constrained auction is such that

The good is allocated to the highest bidder;
Agent i pays a price

$$p_i(b) := egin{cases} (n-1)b_i & ext{ if } b_i \geq \max_k b_k \ -b_j & ext{ if } b_j \geq \max_k b_k, \end{cases}$$

Agent i receives a lump-sum transfer $\phi_i(U^0, I)$.

Always works under the condition of the theorem.
A liquidity-constrained auction

Let
$$F_i = F$$
, $V_i = [0, \overline{v}]$, and let $b := (b_1, \dots, b_n) \in \mathbb{R}^n_+$.

PROPOSITION 1. The liquidity-constrained auction is such that

The good is allocated to the highest bidder;

Agent i pays a price

$$p_i(b) := egin{cases} (n-1)b_i & ext{ if } b_i \geq \max_k b_k \ -b_j & ext{ if } b_j \geq \max_k b_k, \end{cases}$$

• Agent *i* receives a lump-sum transfer $\phi_i(U^0, I)$.

Always works under the condition of the theorem.

A liquidity-constrained auction

Let
$$F_i = F$$
, $V_i = [0, \overline{v}]$, and let $b := (b_1, \dots, b_n) \in \mathbb{R}^n_+$.

PROPOSITION 1. The liquidity-constrained auction is such that

The good is allocated to the highest bidder;

Agent i pays a price

$$p_i(b) := egin{cases} (n-1)b_i & ext{ if } b_i \geq \max_k b_k \ -b_j & ext{ if } b_j \geq \max_k b_k, \end{cases}$$

• Agent *i* receives a lump-sum transfer $\phi_i(U^0, I)$.

Always works under the condition of the theorem.

Market size

How does **market size** affect our efficient liquidity-constrained mechanisms?

At first sight, difficult to say: *n* increases both the LHS and the LHS and RHS of:

$$\sum_{i\in\mathbb{N}}\min\{C_i,l_i\}\geq (n-1)\mathbb{E}g(\nu).$$

PROPOSITION 2. Assume $l_i := \tilde{l}$ for all *i*. An efficient allocation mechanisms exists only if

$$\tilde{l} \geq \frac{n-1}{n} \mathbb{E}g(v).$$

The threshold $\widetilde{\mathsf{I}}$ is increasing in n and converges to $\overline{\mathsf{v}}$ when $\mathsf{n} o \infty.$

Market size

How does **market size** affect our efficient liquidity-constrained mechanisms?

At first sight, difficult to say: n increases both the LHS and the LHS and RHS of:

$$\sum_{i\in\mathbb{N}}\min\{C_i,I_i\}\geq (n-1)\mathbb{E}g(\nu).$$

PROPOSITION 2. Assume $l_i := \tilde{l}$ for all *i*. An efficient allocation mechanisms exists only if

$$\tilde{l} \geq \frac{n-1}{n} \mathbb{E}g(v).$$

The threshold $\widetilde{\mathsf{I}}$ is increasing in n and converges to $\overline{\mathsf{v}}$ when $\mathsf{n} o \infty.$

Market size

How does **market size** affect our efficient liquidity-constrained mechanisms?

At first sight, difficult to say: n increases both the LHS and the LHS and RHS of:

$$\sum_{i\in\mathbb{N}}\min\{C_i,l_i\}\geq (n-1)\mathbb{E}g(\nu).$$

PROPOSITION 2. Assume $l_i := \tilde{l}$ for all *i*. An efficient allocation mechanisms exists only if

$$\tilde{l} \geq \frac{n-1}{n} \mathbb{E}g(v).$$

The threshold \tilde{l} is increasing in n and converges to \overline{v} when $n \to \infty$.

Consider an extension of the buyer-seller problem of Myerson and Satterthwaite (1986) to **multiple buyers.**

One seller, i=1, with valuation $v_1\in [0,c]$ and $u_i^0(v)=v_1.$

Outside option accounts for ownership of the good.

And (n-1) buyers with valuation $v_i \in [0,1]$ and $u_i^0(v) = 0$.

When n = 2, the celebrated result of MS (1986) applies:

▶ There exists no efficient allocation mechanism.

Consider an extension of the buyer-seller problem of Myerson and Satterthwaite (1986) to **multiple buyers.**

One seller, i = 1, with valuation $v_1 \in [0, c]$ and $u_i^0(v) = v_1$.

Outside option accounts for ownership of the good.

And (n-1) buyers with valuation $v_i \in [0,1]$ and $u_i^0(v) = 0$.

When n = 2, the celebrated result of MS (1986) applies:

Consider an extension of the buyer-seller problem of Myerson and Satterthwaite (1986) to **multiple buyers.**

One seller, i = 1, with valuation $v_1 \in [0, c]$ and $u_i^0(v) = v_1$.

Outside option accounts for ownership of the good.

And (n-1) buyers with valuation $v_i \in [0,1]$ and $u_i^0(v) = 0$.

When n = 2, the celebrated result of MS (1986) applies:

▶ There exists no efficient allocation mechanism.

Consider an extension of the buyer-seller problem of Myerson and Satterthwaite (1986) to **multiple buyers.**

One seller, i = 1, with valuation $v_1 \in [0, c]$ and $u_i^0(v) = v_1$.

Outside option accounts for ownership of the good.

And (n-1) buyers with valuation $v_i \in [0,1]$ and $u_i^0(v) = 0$.

When n = 2, the celebrated result of MS (1986) applies:

There exists no efficient allocation mechanism.

However, when n > 2, there exists a threshold $n^*(c)$ such that efficient trade is possible if $n \ge n^*(c)$.

Intuition: If there are enough buyers (\sim competition) \Rightarrow Efficient trade is possible.

Objection: The more the buyers, the stronger the liquidity requirements.

# of buyers	1	2	3	4	5	6	7		9
ĩ		.33	.50	.60	.66	.71	.75	.77	

However, when n > 2, there exists a threshold $n^*(c)$ such that efficient trade is possible if $n \ge n^*(c)$.

Intuition: If there are enough buyers (\sim competition) \Rightarrow Efficient trade is possible.

Objection: The more the buyers, the stronger the liquidity requirements.

# of buyers	1	2	3	4	5	6	7		9
ĩ		.33	.50	.60	.66	.71	.75	.77	

However, when n > 2, there exists a threshold $n^*(c)$ such that efficient trade is possible if $n \ge n^*(c)$.

Intuition: If there are enough buyers (\sim competition) \Rightarrow Efficient trade is possible.

Objection: The more the buyers, the stronger the liquidity requirements.

# of buyers	1	2	3	4	5	6	7		9
ĩ		.33	.50	.60	.66	.71	.75	.77	

However, when n > 2, there exists a threshold $n^*(c)$ such that efficient trade is possible if $n \ge n^*(c)$.

Intuition: If there are enough buyers (\sim competition) \Rightarrow Efficient trade is possible.

Objection: The more the buyers, the stronger the liquidity requirements.

# of buyers	1	2	3	4	5	6	7	8	9
ĩ	0	.33	.50	.60	.66	.71	.75	.77	.80

A particular case of the previous framework is the case of **reallocation** problems.

- Agents initially *owns* a share of the resource.
- We are looking for an efficient reallocation of the resource among them.

For instance, let $u_i^0(v) = v_i r_i$ be the outside option of agent *i*.

- ▶ $r_i \in [0,1]$ is agent *i*'s initial ownership share, $\sum_{j \in N} r_j = 1$.
- ▶ If agent *i* refuses to participate: still enjoys their share of the good.

A particular case of the previous framework is the case of **reallocation** problems.

- Agents initially *owns* a share of the resource.
- We are looking for an efficient reallocation of the resource among them.

For instance, let $u_i^0(v) = v_i r_i$ be the outside option of agent *i*.

- ▶ $r_i \in [0,1]$ is agent *i*'s initial ownership share, $\sum_{j \in N} r_j = 1$.
- ▶ If agent *i* refuses to participate: still enjoys their share of the good.

A particular case of the previous framework is the case of **reallocation** problems.

- Agents initially *owns* a share of the resource.
- We are looking for an efficient reallocation of the resource among them.

For instance, let $u_i^0(v) = v_i r_i$ be the outside option of agent *i*.

- ▶ $r_i \in [0, 1]$ is agent *i*'s initial ownership share, $\sum_{j \in N} r_j = 1$.
- ▶ If agent *i* refuses to participate: still enjoys their share of the good.

A particular case of the previous framework is the case of **reallocation** problems.

- Agents initially *owns* a share of the resource.
- We are looking for an efficient reallocation of the resource among them.

For instance, let $u_i^0(v) = v_i r_i$ be the outside option of agent *i*.

- ▶ $r_i \in [0, 1]$ is agent *i*'s initial ownership share, $\sum_{i \in N} r_i = 1$.
- ▶ If agent *i* refuses to participate: still enjoys their share of the good.

Each agent cannot be charged more than $\delta_i := \min \{C_i(r_i), l_i\}$.

Each agent cannot be charged more than $\delta_i := \min \{C_i(r_i), l_i\}$.

Lesson: Reducing ownership of agent i increases how much we can charge them...

... up to the point they become liquidity constrained.

PROPOSITION 3. Let $l_1 \ge \cdots \ge l_n$, efficient reallocation is more likely to be attainable when $r_1 \le \cdots \le r_n$.

Lesson: Reducing ownership of agent i increases how much we can charge them...

... up to the point they become liquidity constrained.

PROPOSITION 3. Let $l_1 \geq \cdots \geq l_n$, efficient reallocation is more likely to be attainable when $r_1 \leq \cdots \leq r_n$.

Lesson: Reducing ownership of agent i increases how much we can charge them...

... up to the point they become liquidity constrained.

PROPOSITION 3. Let $l_1 \ge \cdots \ge l_n$, efficient reallocation is more likely to be attainable when $r_1 \le \cdots \le r_n$.

Lesson: Reducing ownership of agent i increases how much we can charge them...

... up to the point they become liquidity constrained.

PROPOSITION 3. Let $l_1 \ge \cdots \ge l_n$, efficient reallocation is more likely to be attainable when $r_1 \le \cdots \le r_n$.

Concluding remarks

The design of incentive compatibility constraints is crucial to account for liquidity constraints:

• Lower range of prices \Rightarrow Redistribution more effective.

This work characterizes the minimal liquidity requirements to achieve an efficient allocation.

And shows how market size or initial ownership in reallocation problems affects the *performance* of liquidity-constrained mechanisms.

Thank you!