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Introducing example

Recall the simple pure coordination game

X \Y Jazz Club Rock Club

Jazz Club 1,1 0,0

Rock Club 0,0 1,1

� Static game of complete information

� Simultaneous play

� Perfect knowledge of the other player’s payoffs
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Introducing example

� What if you have a doubt about whether your friend Y really
likes Jazz music?

1. If Y likes Jazz

X\Y Jazz Rock

Jazz 1,1 0,0

Rock 0,0 1,1

2. If Y hates Jazz

X\Y Jazz Rock

Jazz 1,-1 0,0

Rock 0,0 1,1

� You are uncertain whether you are playing game 1 or game 2.

� But you have some idea about the likelihood of each
scenario

� You think that there is a chance of 2/3 that Y likes Jazz
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What’s new?

Incomplete information games

� Incomplete information: there is uncertainty about the
payoffs of other players

� At least one player must be uncertain

� Here X does not know for sure if Y likes or hates Jazz
music.

� That is, payoffs are not common knowledge

� Other examples: Bidding games, Cournot with unknown
marginal costs, Poker
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Reminder: Static games of complete information

Complete information games

� Set of players N = {1, . . . , n}

� Set of actions A1, . . . ,An

� Let A := A1 × · · · × An

� Payoffs ui : A → R
� For every vector of actions (a1, . . . , an) ∈ A player i’s
payoff is defined by ui (a1, . . . , an).

� Strategies and actions coincide in static game of CI

� (s∗i , s
∗
−i ) is a Nash equilibrium if

ui (s
∗
i , s

∗
−i ) ≥ ui (si , s

∗
−i ) for all i ∈ N, si ∈ Si
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Types and payoffs

We introduce a new notion: Types

▷ conveys some information about players’ characteristics

� Ti is player i’s Type space

� ti ∈ Ti is player i’s type

New definition of payoffs: ui : A× Ti → R
� For each action profile and type we write ui (a1, . . . , an; ti )

Jazz/Rock example:

▷ A1 = A2 = {Jazz,Rock}
▷ TY = {tY 1, tY 2} = {Likes Jazz,Hates Jazz}
▷ uY (J, J; tY 1) = 1 and uY (J, J; tY 2) = −1
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Types and payoffs

Richer payoff definition

We could define ui : A× T → R where T := T1 × · · · × Tn

� That is ui (a1, . . . , an; t1, . . . , tn)

In other words, my payoff can depend on the actions of all
players as well as on the type of all players.

� Jazz/Rock example: if player X dislikes the idea that player
Y will hate their evening listening to jazz, we may think that
player’s X utility depends on player Y’s type.

We can also use this definition to assume that some actions are
not available to some players with certain types
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Types and non-available actions

Example: Assume you draw two cards in a regular deck and
then you have to play one.

� Your type represents the cards you hold in your hands, e.g.,
ti = {(Ace,Ace)} or ti = {(Queen, Jack)}

� Let Ai = {Ace,King,Queen, . . . , 2, 1}

� Obviously you cannot choose ai = Ace if ti = {(Queen, Jack)}

� We can simply say that if you play “Ace” when you do not
have one, then your payoff is −∞ so that this action virtually
disappears

More generally: Any action ai ∈ Ai such that ui (ai , a−i ; ti ) = −∞
is not available to player i with type ti .
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Important: What is known/unknown?

Known: Type spaces T1, . . . ,Tn and payoff functions
u1(a1, . . . , an; t1, . . . , tn), . . . , un(· ; ·) are all common knowledge.

Unknown: player i does not know what is t−i .

� Each player knows all possible games

� But does not know which one is actually played

Next question: How to handle a game that contains several
potential games?
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Beliefs
Players are assumed to:

� Know their own type only (i knows ti )

� Have beliefs about the types of the other players (t−i )

A belief is a probability distribution over the types of the other
players given my own type.

Formally, the belief of player i of type ti about all other players’
types writes

pi (t−i | ti ) ∈ [0, 1]

where ∑
t−i∈T−i

pi (t−i | ti ) = 1
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Beliefs: Dependent/Independent

The notation pi (t−i | ti ) allows for interdependent types.

If types are independent we usually use the more convenient
notation: pi (t−i ).

Examples:

� Independent types: You play a game with a friend to decide who
will get the chocolate ice cream and who will get the vanilla one.
Each knows which her/his favorite, but you are both uncertain
about your friend’s taste. Your belief about your friend’s taste is
unlikely to depend on your own taste.

� Interdependent types: You and your friend draw one card in a
3-card deck containing only one Ace, one King and one Queen. You
look at your card and you see that it is the King. You deduce that
your friend can only have the Ace or the Queen. Knowing your type
helps you better predict the type of the other player.
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Beliefs: Priors

How to compute pi (t−i | ti )?

Usually, we first assume that players have a common prior on the
joint distribution of types.

Let X1, . . . ,Xn denote the random variables associated with players
1, . . . , n then define:

� p(t1, . . . , tn) := P(X1 = t1, . . . ,Xn = tn)

� for convenience, we sometimes write p(t1, . . . , tn) =: p(ti , t−i )

Naturally,
∑

t∈T p(t) = 1.
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Beliefs: Priors and Bayes Rule

Common knowledge: The joint probability distribution
p(t1, . . . , tn).

Private information: Only player i knows their type ti (i.e.
realization of Xi ).

To form their belief, each player uses their own private information
to “guess better” the types of other players.

Bayes Rule: For two players for instance

pi (tj | ti ) =
p(ti , tj)

p(ti )
,

where p(ti ) := P(Xi = ti ).
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Reminder: Bayes Rule

Reminder: Define a discrete probability space (Ω,F ,P).

Take any two events A, B ∈ F (s.t. P(B) ̸= 0) then Bayes’
theorem writes:

P(A | B) = P(A,B)
P(B)

.

Useful relationships:

� P(A,B) = P(B | A)P(A) then P(A | B) = P(B|A)P(A)
P(B)

� P(A) =
∑m

i=1 P(A,Bi ) where B1, . . . ,Bm is a partition of F

� A and B are independent if and only if P(A,B) = P(A)P(B)
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Beliefs: An Example

Two-player card game

� Deck: contains only 1 Ace, 1 King, and 1 Queen
� Each player draws one card and can privately look at it

Type spaces are T1 = T2 = {A,K ,Q}.

Well shuffled deck: probability of drawing a card is uniform then

t1 \t2 A K Q

A 0 1/6 1/6

K 1/6 0 1/6

Q 1/6 1/6 0

⇔ p(t1, t2) =

{
1/6 if t1 ̸= t2

0 if t1 = t2
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Beliefs: An Example

Now assume that player 1 draws a King: t1 = K

� a. Player 1 learns their type (King)

� b. Player 1 knows that Player 2 cannot have a King: t2 ̸= K

Using this information, Player 1 forms their belief:

p1(t2 | t1 = K ) =
p(t1 = K , t2)

p(t1 = K )
for each t2 = A,Q
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Beliefs: An Example

For instance, let us find p1(t2 = A | t1 = K ). We first compute

(a) p(t1 = K , t2 = A) = 1/6

(b) p(t1 = K ) =
∑

t2=A,K ,Q

p(t1 = K , t2)

= p(K ,A)︸ ︷︷ ︸
=1/6

+ p(K ,K )︸ ︷︷ ︸
=0

+ p(K ,Q)︸ ︷︷ ︸
=1/6

+ =
1

3

Using Bayes’ formula we have

p1(t2 = A | t1 = K ) =
p(t1 = K , t2 = A)

p(t1 = K )
=

1/6

1/3
=

1

2

Similarly p1(K | K ) = 0 and p1(Q | K ) = 1/2
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Normal-form representation

Definition: A static Bayesian game is defined by the following
normal-form representation:

� Set of players N = {1, . . . , n}
� Sets of actions A1,A2, . . . ,An

� Sets of types T1,T2, . . . ,Tn

� Beliefs p1, p2, . . . , pn

� (ex post) Payoffs ui (a1, . . . , an; t1, . . . , tn)
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Normal-form representation: Example

Example: Jazz/Rock club

� Players: N = {X ,Y }
� Actions: Ai = {Jazz ,Rock}
� Types: TX = {tX},
TY = {tY 1, tY 2} = {Likes Jazz,Hates Jazz}

� Beliefs: pX (tY 1 | tX ) = 2/3, pY (tX | tY 1) = pY (tX | tY 2) = 1

� (ex post) Payoffs:

1. tX , tY 1

X\Y Jazz Rock

Jazz 1,1 0,0

Rock 0,0 1,1

2. tX , tY 2

X\Y Jazz Rock

Jazz 1,-1 0,0

Rock 0,0 1,1
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Normal-form representation

What’s new: types, beliefs and type-dependent payoffs.

▷ Fix a type for each player (no uncertainty) and you obtain a static
game of complete info

▷ Normal-form of static incomplete info games:

� Collection of static games of complete info on which players
have some belief on their probability of occurrence.

1. tX , tY 1

X\Y Jazz Rock

Jazz 1,1 0,0

Rock 0,0 1,1

Probability: 2/3

2. tX , tY 2

X\Y Jazz Rock

Jazz 1,-1 0,0

Rock 0,0 1,1

Probability: 1/3
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Equilibrium concept

We also need to redefine the equilibrium concept for incomplete
info games.

We must redefine:

� What is a strategy;

� How to evaluate payoffs;

� Equilibrium condition.
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Strategies

In static games of CI, strategies and actions coincide

� Not here, we have to redefine the notion of strategy

For each type ti ∈ Ti , a strategy is

▷ si : Ti → Ai ⇔ a strategy is a function si (ti ) ∈ Ai

Player i anticipates the fact that different types tj of player j
may play differently

▷ But is still uncertain which type they will face in the game

You can think of types as virtual new players in the game

▷ Each type is a player who forms a strategy on their own

▷ Yet, you are not sure which player you will play against
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Strategies: An example

Card game: Assume players’ action set is Ai = {Play ,Withdraw}.

For each hand, player i decides what to do. For instance

si (A) = P, si (K ) = P, si (Q) = W .

Player i must also consider the fact that player j will have sj(A),
sj(K ) and sj(Q) potentially different.

Notation: For convenience, we will often denote the strategy
profile of a player like this: PPP, PPW , PWP, . . .

▷ PPP means that types A, K and Q all decide to Play

▷ PWP means that types A, K and Q decide to Play, Withdraw
and Play, respectively
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Expected Payoffs

We now have to model how players evaluate their utility.

▷ Depends on what they know.

Information stages

� Ex ante: Player i knows nothing about types

� Interim: Player i knows their type but not the one of the
other players

� Ex post: Player i knows all players’ types

Recall the notation ui (a1, . . . , an; t1, . . . , tn).

▷ This is defined at the ex post stage
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Expected Payoffs

Complete info: Players are at the ex post stage, they know

▷ their own type and all other players’ types

▷ they know which ex post payoff is relevant

▷ they know which game they play for sure

Incomplete info: Players are at the interim stage, they know

▷ their own type but not the other players’ types

▷ the probability of each t−i ∈ T−i

▷ the ex post payoffs but not which one is relevant

▷ that different types may have different strategies

Game Theory: Static Games of Incomplete Information 30 / 91



Expected Payoffs

Incomplete info: At the interim stage, player i of type ti who
plays si can compute:

▷ pi (t−i | ti ) for each t−i ∈ T−i

▷ the ex post payoff ui (si , s−i (t−i ); ti , t−i ) for each t−i ∈ T−i

and each s−i (t−i )

Then the interim expected payoff for given si and s−i (t−i ) is
obtained by averaging over all possible t−i ∈ T−i∑

t−i∈T−i

pi (t−i | ti )ui (si , s−i (t−i ); ti , t−i )
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Expected Payoffs: An Example
Previous card game: Assume that if you play and win you get 1, play and
loose you get -1/2, withdraw you get 0 and the other player 1 (if they played).

Interim stage: Assume player 1 knows t1 = K and plays s1(K) = P.

▷ If player 1 anticipates s2(A) = P and s2(Q) = W (s2(K) is irrelevant),
the relevant ex post payoffs are:

u1(P,P;K ,A) = −1

2
,

u1(P,W ;K ,Q) = 1.

▷ Player 1 computes p1(A | K) = p1(Q | K) = 1/2 and p1(K | K) = 0

The interim expected payoff is

p1(A | K)u1(P,P | K ,A) + p1(Q | K)u1(P,W | K ,Q)

=
1

2
(−1

2
) +

1

2
1 =

1

4
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Bayesian Nash Equilibrium: Definition

First, recall that a strategy si is now a function si : Ti → Ai

▷ So when we say si , we refer to si (ti ) for each ti ∈ Ti

Definition: In a static Bayesian game, the strategy profile
(s∗1 , . . . , s

∗
n) is a pure-strategy Bayesian Nash Equilibrium if

s∗i (ti ) ∈ argmax
ai∈Ai

∑
t−i∈T−i

pi (t−i | ti )ui (ai , s∗−i (t−i ); ti , t−i )

for all ti ∈ Ti and i ∈ N.
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Bayesian Nash Equilibrium: Intuition

More intuitively, player i

▷ considers all the possible games for every possible t−i ∈ T−i

▷ computes their interim expected payoff (averaging over games
using their belief) as a function of their own action ai , type ti
and other player’s strategies s−i ∈ S−i

▷ for each of their possible type ti ∈ Ti , player i selects the
action ai ∈ Ai that maximizes this interim EP to best-respond
to s−i ∈ S−i

A strategy profile (s∗1 , . . . , s
∗
n) is a Bayesian NE when each s∗i (ti ) is

actually a best-response to s∗−i (t−i ) for all ti ∈ Ti and all i ∈ N

▷ In other words: no player has a profitable deviation
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BNE: Equilibrium Strategies

Why do we consider si (tj) for player i of type ti ̸= tj?

▷ Why should we define a strategy for a type that does not exist
in the game?

Simply because only player i knows that their type is ti

▷ All other players are uninformed about player i ’s type and so
they must be able to anticipate what would a potential player
i of type tj would do, that is, si (tj)

Parallel with dynamic games of CI

▷ Recall that we had to define a player’s strategy at each
decision node, even on those never played at equilibrium
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BNE: Implicit timing

It is possible to represent Bayesian Games in extensive form.

The implicit timing is as follows:

0. Nature draws types (t1, . . . , tn) according to p(t1, . . . , tn)

1. Each player i privately learns ti , computes beliefs and interim
expected payoffs as a function of ai and s−i

2. Players simultaneously choose the action that maximizes their
interim EP

3. Information is revealed and ex post payoffs ui (s
∗
i , s

∗
−i ; ti , t−i )

are received

Game Theory: Static Games of Incomplete Information 37 / 91



BNE: An Example

Example: Jazz/Rock Club

▷ One type for X, two types for Y (likes or hates Jazz)

▷ Beliefs: P(“Player Y likes Jazz”) = α ∈ [0, 1]

1. tX , tY 1

X\Y Jazz Rock

Jazz 1,1 0,0

Rock 0,0 1,1

Prob = α

2. tX , tY 2

X\Y Jazz Rock

Jazz 1,-1 0,0

Rock 0,0 1,1

Prob = 1− α
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BNE: An Example

First, consider the two possible games separately.

▷ Two pure-strat Nash in 1.

▷ Unique pure-strat Nash in 2.

1. tX , tY 1

X\Y Jazz Rock

Jazz 1,1 0,0

Rock 0,0 1,1

Prob = α

2. tX , tY 2

X\Y Jazz Rock

Jazz 1,-1 0,0

Rock 0,0 1,1

Prob = 1− α
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BNE: An Example

Information: Nature draws types and

▷ Only Y learns if they like or hate jazz.

▷ Player X has only a belief α ∈ [0, 1] that Y likes jazz.

Player Y can distinguish which game is actually played
Player X must form expectations over the outcomes

Strategies

▷ Player X strategy is simply choosing J or R

▷ Player Y strategy is choosing a couple of strategies JJ, JR, RJ or
RR

Notation: here JR means s2(tY 1) = J and s2(tY 2) = R for instance. The
first (resp. second) letter is the strategy for the first (resp.second) type

Game Theory: Static Games of Incomplete Information 40 / 91



BNE: An Example

Compute X ’s interim expected payoff for each action aX ∈ {J,R}
and each strategy of Y (JJ, JR, RJ and RR)

When Player X plays J we have:

µX (J, JJ) = α · 1 + (1− α) · 1 = 1

µX (J, JR) = α · 1 + (1− α) · 0 = α

µX (J,RJ) = α · 0 + (1− α) · 1 = 1− α

µX (J,RR) = α · 0 + (1− α) · 0 = 0

1. tX , tY 1

X\Y Jazz Rock

Jazz 1,1 0,0

Rock 0,0 1,1

Prob = α

2. tX , tY 2

X\Y Jazz Rock

Jazz 1,-1 0,0

Rock 0,0 1,1

Prob = 1− α
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BNE: An Example

When Player X plays R we have:

µX (R, JJ) = α · 0 + (1− α) · 0 = 0

µX (R, JR) = α · 0 + (1− α) · 1 = 1− α

µX (R,RJ) = α · 1 + (1− α) · 0 = α

µX (R,RR) = α · 1 + (1− α) · 1 = 1

1. tX , tY 1

X\Y Jazz Rock

Jazz 1,1 0,0

Rock 0,0 1,1

Prob = α

2. tX , tY 2

X\Y Jazz Rock

Jazz 1,-1 0,0

Rock 0,0 1,1

Prob = 1− α
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BNE: An Example

We can create a payoff matrix as follows.

X \Y JJ JR RJ RR

J 1 ; (1,−1) α ; (1, 0) 1− α ; (0,−1) 0 ; (0, 0)

R 0 ; (0, 0) 1− α ; (0, 1) α ; (1, 0) 1 ; (1, 1)

Best-responses

▷ Player X cannot distinguish types of Y : Best-responds to JJ,
JR, RJ and RR by choosing a single action J or R

▷ Player Y best-responds to J and R by choosing two actions:
One when tY = tY 1 and one when tY = tY 2

Game Theory: Static Games of Incomplete Information 43 / 91



BNE: An Example

Assume α > 1− α

X \Y JJ JR RJ RR

J 1 ; (1,−1) α ; (1, 0) 1− α ; (0,−1) 0 ; (0, 0)

R 0 ; (0, 0) 1− α ; (0, 1) α ; (1, 0) 1 ; (1, 1)

Player X ’s best-responses

▷ J to JJ

▷ J to JR

▷ R to RJ

▷ R to RR

Player Y ’s best-responses

Type tY 1

▷ J to J

▷ R to R

Type tY 2

▷ R to J

▷ R to R
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BNE: An Example

Assume α > 1− α

X \Y JJ JR RJ RR

J 1 ; (1,−1) α ; (1,0) 1− α ; (0,−1) 0 ; (0,0)

R 0 ; (0, 0) 1− α ; (0,1) α ; (1, 0) 1 ; (1,1)

Player X ’s best-responses

▷ J to JJ

▷ J to JR

▷ R to RJ

▷ R to RR

Player Y ’s best-responses

Type tY 1

▷ J to J

▷ R to R

Type tY 2

▷ R to J

▷ R to R
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BNE: An Example

Two pure-strat. Bayesian Nash Equilibria for α > 1− α.

▷ (J, JR)

▷ (R,RR)

Notice that α > 1− α ⇔ α > 1/2.

▷ (J, JR) is a BNE as long as X believes it is more likely that Y
likes Jazz than hates it.

▷ It is easy to show that if we assume instead that α < 1/2,
then only (R,RR) is a BNE
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BNE: Another Example

Consider now the following game.

1\2 L R

H 2,1 0,0

D 0,0 1,2

Prob = 1/2

1\2 L R

H 2,0 0,2

D 0,1 1,0

Prob = 1/2

Assume player 1 has no information while player 2 knows which
game is played.

▷ Player 1 has to choose H or D

▷ Player 2 has to choose LL, LR, RL or RR
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BNE: Another Example

Compute 1’s interim expected payoff for each action a1 ∈ {H,Q}
and each strategy of Y (LL, LR, RL and RR).

When Player 1 plays H we have:

µ1(H, LL) =
1

2
· 2 + 1

2
· 2 = 2

µ1(H, LR) =
1

2
· 2 + 1

2
· 0 = 1

µ1(H,RL) =
1

2
· 0 + 1

2
· 2 = 1

µ1(H,RR) =
1

2
· 0 + 1

2
· 0 = 0

1\2 L R

H 2,1 0,0

D 0,0 1,2

Prob = 1/2

1\2 L R

H 2,0 0,2

D 0,1 1,0

Prob = 1/2
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BNE: Another Example

When Player 1 plays D we have:

µ1(D, LL) =
1

2
· 0 + 1

2
· 0 = 0

µ1(D, LR) =
1

2
· 0 + 1

2
· 1 =

1

2

µ1(D,RL) =
1

2
· 1 + 1

2
· 0 =

1

2

µ1(D,RR) =
1

2
· 1 + 1

2
· 1 = 1

1\2 L R

H 2,1 0,0

D 0,0 1,2

Prob = 1/2

1\2 L R

H 2,0 0,2

D 0,1 1,0

Prob = 1/2
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BNE: Another Example

1 \2 LL LR RL RR

H 2 ; (1, 0) 1 ; (1, 2) 1 ; (0, 0) 0 ; (0, 2)

D 0 ; (0, 1) 1
2 ; (0, 0) 1

2 ; (2, 1) 1 ; (2, 0)

Player 1’s best-responses

▷ H to LL

▷ H to LR

▷ H to RL

▷ D to RR

Player 2’s best-responses

Type 1

▷ L to H

▷ R to D

Type 2

▷ R to H

▷ L to D
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BNE: Another Example

1 \2 LL LR RL RR

H 2 ; (1, 0) 1 ; (1,2) 1 ; (0, 0) 0 ; (0,2)

D 0 ; (0,1) 1
2 ; (0, 0) 1

2 ; (2,1) 1 ; (2, 0)

Player 1’s best-responses

▷ H to LL

▷ H to LR

▷ H to RL

▷ D to RR

Player 2’s best-responses

Type 1

▷ L to H

▷ R to D

Type 2

▷ R to H

▷ L to D

Unique pure-strat BNE is (H,LR)
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Bayesian Cournot Nash

We can revisit the classical Cournot competition problem in an
incomplete information environment.

Assume firm 1 is uncertain about firm 2’s marginal cost.

▷ c2 ∈ {cL, cH} with cL < cH

▷ c1 = c is common knowledge

Cournot Game:

▷ Players: N = {Firm 1,Firm 2}

▷ Actions: quantities q1, q2 ∈ [0,+∞)

▷ Types: c1 ∈ T1 = {c}, c2 ∈ T2 = {cL, cH}

▷ Beliefs: p1(cH) = θ ∈ [0, 1]

▷ Ex payoffs: πi (q1, q2; ci )
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Bayesian Cournot Nash: Setting

Inverse demand: P(Q) = a− Q with Q = q1 + q2.

Ex post profits write, for c1 = c and c2 = cL, cH ,

π1(q1, q2; c1) = [a− q1 − q2 − c]q1,

π2(q1, q2; c2) = [a− q1 − q2 − c2]q2.

Each firm maximizes profits but be careful!

▷ Firm 1 must consider both types of firm 2, i.e., consider a
different strategy for each type of firm 2 and then take the
average profit between the two possible scenario

▷ Firm 2 must consider firm 1’s strategy (only one) and faces
two different maximization problems for each of its type
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Bayesian Cournot Nash: Firm 2’s problem

Firm 2 faces two maximization problems depending on its type

▷ Two strategies to choose: qL2 and qH2

▷ Considers only one strategy for firm 1: q1

Type cL : max
qL2

[a− q1 − qL2 − cL]q
L
2 ,

Type cH : max
qH2

[a− q1 − qH2 − cH ]q
H
2 .
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Bayesian Cournot Nash: Firm 1’s problem

Firm 1 faces a unique maximization problem.

▷ Only sets one strategy: q1

▷ Considers two strategies for firm 2: qL2 and qH2

▷ Averages over possible games according to its belief

max
q1

θ[a− q1 − qH2 − c]q1 + (1− θ)[a− q1 − qL2 − c]q1.

It should be now clear to you why we must define strategies for
every possible types, even for the ones that are not in the game
after nature have drawn them.

▷ Firm 1 needs to consider two different potential strategies for
firm 2 to compute its expected payoff even if firm 2 knows
that it is of type cH .
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Bayesian Cournot Nash: Firm 2’s Best-response

Let us compute the two possible best-response for firm 2’s.

First-order conditions for each type are:

Type cL FOC : a− q1 − 2qL2 − cL = 0,

Type cH FOC : a− q1 − 2qH2 − cH = 0.

Then, best-response for each type writes:

Type cL : qL2 (q1) =
a− cL − q1

2
,

Type cH : qH2 (q1) =
a− cH − q1

2
.
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Bayesian Cournot Nash: Firm 1’s Best-response

Let us now compute the best-response of firm 1’s.

The first-order condition for the interim expected profit writes

FOC: θ
[
a− 2q1 − qH2 − c

]
+ (1− θ)

[
a− 2q1 − qL2 − c

]
= 0

⇔ a− 2q1 − c − θqH2 − (1− θ)qL2 = 0

Solving for q1 gives

q1(q
L
2 , q

H
2 ) =

a− c − θqH2 − (1− θ)qL2
2

Notice that Firm 1’s best-response is a function of qL2 and qH2 .

▷ Each quantity is weighted by its probability of occurrence
in the BR function
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Bayesian Cournot Nash: Equilibrium

To obtain the BNE, simply solves the following linear system of
three equations and three unknowns.

q1(q
L
2 , q

H
2 ) =

a− c − θqH2 − (1− θ)qL2
2

qL2 (q1) =
a− cL − q1

2
qH2 (q1) =

a− cH − q1
2

Put differently we look for a fixed point:
q1(q

L
2 (q1), q

H
2 (q1)) = q1

qL2 (q
L
2 , q

)
2 = qL2

qH2 (q
L
2 , q

H
2 ) = qH2
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Bayesian Cournot Nash: Equilibrium

Start by plugging qL2 (q1) and qH2 (q1) in q1(q
L
2 (q1), q

H
2 (q1)):

q1 =
a− c

2
− θ

2

(
a− cH − q1

2

)
− 1− θ

2

(
a− cL − q1

2

)
q1

(
1− θ

4
− 1− θ

4

)
=

2a− 2c − θa− (1− θ)a+ θcH + (1− θ)cL
4

Simplifying we obtain

q∗1 =
a− 2c + θcH + (1− θ)cL

3
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Bayesian Cournot Nash: Equilibrium

Now plugging q∗1 in each best-response for firm 2 yields:

qL2 =
a− cL

2
− 1

2

(
a− 2c + θcH + (1− θ)cL

3

)
qH2 =

a− cH
2

− 1

2

(
a− 2c + θcH + (1− θ)cL

3

)
Simplifying and rearranging we get

qL∗2 =
a− 2cL + c

3
− θ

6
(cH − cL)

qH∗
2 =

a− 2cH + c

3
+

1− θ

6
(cH − cL)
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Bayesian Cournot Nash: Equilibrium

The Bayesian Nash Equilibrium is therefore given by

q∗1 =
a− 2c + θcH + (1− θ)cL

3

qL∗2 =
a− 2cL + c

3
− θ

6
(cH − cL)

qH∗
2 =

a− 2cH + c

3
+

1− θ

6
(cH − cL)

The uninformed player, firm 1, plays an average quantity.

The informed player, firm 2, plays a different quantity when of
different type
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Bayesian Cournot Nash: Equilibrium

If we remove uncertainty, for instance:

▷ θ = 1: Firm 2 is for sure of type cH .

Then

q∗1 =
a− 2c + θcH + (1− θ)cL

3
=

a− 2c + cH
3

and

qH∗
2 =

a− 2cH + c

3
+

1− θ

6
(cH − cL) =

a− 2cH + c

3

We exactly obtain the Cournot quantities in a duopoly with certain
marginal costs c and cH for firm 1 and firm 2, respectively
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Bayesian Cournot Nash: Equilibrium

Notice also that, under incomplete information, Firm 2:

▷ of type cH produces more than it would produce if
information was complete

▷ of type cL produces less than it would produce if information
was complete

This stems from the fact that firm 1 produces an average quantity
to adapt each possible cases of firm 2 and firm 2 can use this
uncertainty to its own benefit
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Bidding game/Auction

A very interesting application of Bayesian game: Auctions

Two potential buyers i = 1, 2 are interested in a painting.

▷ Each has a valuation vi ∈ [0, 1] for the painting

▷ vi is private information to i

The seller (or auctioneer) proposes the following selling
mechanism:

▷ Each agent i = 1, 2 must communicate their bid bi ∈ R+

simultaneously

▷ The agent with the highest bid receives the painting and
pays what the amount of their bid to the seller
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Bidding game/Auction

We call this bidding game a sealed-bid first-price auction.

▷ Sealed-bid: Simultaneous bidding, no player can observe the other
player’s bid

▷ First-price: The winner pays what they bid, that is, the highest (or
first) price

Other types of auctions exist:

▷ Sealed-bid second-price auction: Simultaneous bidding, highest
bidder wins but pays the second highest price

▷ All-pay auctions: Several forms but potentially all bidders may
pay/receive something even when they loose

▷ Descending auctions: The auctioneer offers a very high price and
decreases it until someone raises their hand to buy at this price
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Sealed-bid first-price auction: Payoffs

We can write agent i ’s ex post payoff as follows: v

ui (bi , bj ; vi ) =

{
vi − bi if bi ≥ bj

0 if bj < bj

(what happens when bi = bj does not matter as this event has
zero measure).

Each player faces the following trade-off:

▷ communicate a low bid to pay less if awarded the painting

▷ communicate a high bid to have a higher bid than the other
player and be awarded the painting
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Sealed-bid first-price auction: Complete information?

Two-sided incomplete information is what makes the auction
interesting

Assume each bidder perfectly knows both v1 and v2

▷ If v1 ≥ v2, bidder 1 will choose b1 = v2, win the auction for
sure and pay the lowest possible price

▷ If v1 < v2, bidder 2 will choose b2 = v1, win the auction for
sure and pay the lowest possible price

It seems more realistic to assume that you cannot know for sure
the valuation of the other agent
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Sealed-bid first-price auction: Normal-form

Normal-form representation

� Players: N = {1, 2}

� Action space: Ai = R+

� Type space: Ti = [0, 1], the type is vi ∈ Ti

� Beliefs: vi ∼ U [0, 1]

� Ex post payoffs:

ui (bi , bj ; vi ) =

{
vi − bi if bi ≥ bj

0 if bj < bj

Game Theory: Static Games of Incomplete Information 70 / 91



SB FP auction: Strategies and Expected Payoffs

Recall that each type must form a strategy, i.e., si : Ti → Ai

▷ A strategy here is bi (vi )

Player i takes bj(vj) as given and takes expectation over all
vj ∈ [0, 1] to obtain their interim expected payoff:

Ui (bi ; vi ) = P(bi ≥ bj(vj))[vi − bi ] + P(bi < bj(vj)) · 0
= P(bi ≥ bj(vj))[vi − bi ].

The trade-off is clear in Ui (bi ; vi ): Increasing bi ,

▷ increases P(bi ≥ bj(vj))

▷ decreases [vi − bi ]
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SB FP auction: Equilibrium

There is a general solution to this problem.

▷ But it requires some technical tricks that are beyond the
scope of this class

Instead, let us focus on a particular solution:

▷ Linear strategies: bi (vi ) = ai + civi for i = 1, 2

In other words, we postulate that bj(vj) = aj + cjvj is an
equilibrium strategy for player i and we

▷ investigate player i ’s best-response

▷ check that player i ’s best-response is a linear strategy
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SB FP auction: Equilibrium

Fix player j ’s strategy to bj(vj) = aj + cjvj .

Then we can easily compute

P(bi ≥ bj(vj)) = P(bi ≥ aj + cjvj)

= P(vj ≤
bi − aj

cj
)

=
bi − aj

cj
.

Again, notice that player i ’s winning probability is increasing in
bi .

Reminder: The CDF of a uniform distribution on [0, 1] writes F (x) = x for all

x ∈ [0, 1]. Hence P(Z ≤ z) =
∫ 1

0
1{x≤z}dF (x) =

∫ z

0
1dx = z .
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SB FP auction: Equilibrium

For player i , there is no uncertainty on (vi − bi ).

Therefore, player i ’s expected payoff as a function of ai and vi is

Ui (bi ; vi ) =
bi − aj

cj
[vi − bi ].

Player i chooses bi (vi ) ∈ argmaxbi∈R+
Ui (bi ; vi )

The solution to the maximization problem bi (vi ) is a function of
vi , that is, solving the max problem yields player i ’s best-response
for any given vi
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SB FP auction: Equilibrium

The first-order condition of i ’s problem writes

1

cj
[vi − bi ]−

bi − aj
cj

= 0.

Solving for bi yields

bi (vi ) =
aj + vi

2

By a symmetrical reasoning we get

bj(vj) =
ai + vj

2
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SB FP auction: Equilibrium

We have to find the parameter values ai , aj , ci and cj .

By simple identification:

As b(vi ) = ai + civi =
aj
2 + 1

2vi , we must have

ai =
aj
2

ci =
1

2
.

As b(vj) = aj + cjvj =
ai
2 + 1

2vj , we must have

aj =
ai
2

cj =
1

2
.
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SB FP auction: Equilibrium

Then ci = cj =
1
2 .

Also ai =
aj
2 and aj =

ai
2 are equivalent to

2ai = aj =
ai
2
.

It is clear that ai = aj = 0.

The linear equilibrium strategies are then

bi (vi ) =
vi
2
,

bj(vj) =
vj
2
.
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Mixed strategies in CI games

Complete information: Recall that in a CI game, a mixed
strategy is a probability distribution on pure strategies:

▷ A mixed strategy is σi ∈ ∆(Ai )

▷ Where ∆(Ai ) :=
{
(α1, . . . , α|Ai |) ∈ [0, 1]|Ai | |

∑|Ai |
i=1 αi = 1

}
In this context, we assumed that players were

▷ completely informed on the payoffs of the other players

▷ randomizing their action at equilibrium

No uncertainty in the fundamentals of the game

▷ Uncertainty arises endogenously as an equilibrium strategy
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Mixed strategies in CI games

Sometimes, it may be difficult to interpret what randomizing
means.

▷ Do players really flip a coin to determine their strategy?

Harsanyi (1973) proposed an interpretation for mixed strategies
in CI games.

▷ Mixed strategies can instead represent players’ payoff
uncertainty as in an incomplete information game

▷ This holds for a small level of uncertainty
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Mixed strategies in CI games

More precisely, Harsanyi (1973) showed that:

(almost) every mixed-strategy equilibrium in a complete
information game can be approached by a Bayesian game for
which uncertainty is small.

That is, equilibrium strategies of the Bayesian game will
converge to the equilibrium mixed strategies of the complete
information game.

▷ We will be more specific about what we mean by “small” and
“converge”
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An example

Consider the following game of complete information:

1\2 L R

H 2,1 0,0

D 0,0 1,2

� Two pure-strategy Nash equilibria {H, L} and {D,R}

� One mixed-strategy Nash equilibrium in which player 1
plays H with probability 2

3 and player 2 plays L with
probability 1

3

▷ This is the one that interests us

▷ Do you think anyone would play this instead of
pure-strategy NE? Would you?
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An example

Consider now the following game of incomplete information:

� N = {1, 2}

� A1 = {H,D}, A2 = {L,R}

� T1 = T2 = [0, x ], with x ∈ R+

� ti ∼ U [0, x ], i = 1, 2

1\2 L R

H 2 + t1, 1 0,0

D 0,0 1, 2 + t2
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An example

This game is almost like the complete information game except
that two payoffs are now uncertain

1\2 L R

H 2 + t1, 1 0,0

D 0,0 1, 2 + t2

Uncertainty is modeled through the ti ∼ U [0, x ].
▷ i.e., uniform distribution over the interval [0, x ]

Notice that uncertainty is reduced when x decreases.

▷ Extreme case: when x goes to 0 then uncertainty vanishes
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An example

Our goal is to construct a specific pure-strategy Bayesian game
and then see what happens when uncertainty vanishes.

Assume each player plays the following threshold strategy:

▷ Player 1 plays H whenever t1 ≥ a

▷ Player 2 plays R whenever t2 ≥ b

for some a, b ∈ R+
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An example

Player 1 plays H with probability

P(t1 ≥ a) = 1− P(t1 ≤ a)

= 1− a

x

=
x − a

x

Similarly, Player 2 plays R with probability

P(t2 ≥ b) =
x − b

x
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An example

Let us now find the BNE.

Assume Player 2 plays the threshold strategy “play R if t2 ≥ b”.

Then player 1’s expected payoff when playing H is

µ1(H, play R if t2 ≥ b) = P(t2 < b)
[
2 + t1

]
+ P(t2 ≥ b) · 0

=
b

x

[
2 + t1

]
.

Player 1’s expected payoff when playing D is

µ1(R, play R if t2 ≥ b) = P(t2 < b) · 0 + P(t2 ≥ b) · 1

=
x − b

x
.
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An example

For player 1, playing H is optimal whenever

µ1(H, play R if t2 ≥ b) ≥ µ1(D, play R if t2 ≥ b)

⇔ b

x

[
2 + t1

]
≥ x − b

x

⇔ t1 ≥
x

b
− 3.

A similar reasoning for player 2 (fixing player 1’s strategy to the
threshold one) yields that they play R whenever

t2 ≥
x

a
− 3.
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An example

Fortunately, the two conditions correspond to the threshold
strategies that we have postulated when we set a = x

b − 3 and
b = x

a − 3.

Solving the system (involves a quadratic equation) yields

P(t1 ≥ a) = P(t2 ≥ b) = 1− −3 +
√
9 + 4x

2x
.
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An example

Now if x converges to 0, uncertainty vanishes and we obtain

P(t1 ≥ a) = P(t2 ≥ b) =
2

3
.

That is, the pure strategies of the Incomplete information
game are the same as the mixed strategies of the Complete
information game.

Technical note: limx→0
−3+

√
9+4x

2x
is obtained using l’Hopital’s Rule which

states that limx→c
f (x)
g(x)

= limx→c
f ′(x)
g′(x) whenever limx→c f (x) = limx→c g(x) = 0

and g ′(x) ̸= 0)
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An example

Therefore the mixed-strategy Nash equilibrium in the complete
information game can also be seen as a pure-strategy Bayesian
Nash equilibrium when there is a very small amount of
uncertainty of some payoffs.

With this interpretation:

� Mixed-strategy in CI game can express the fact that players
have a small amount of payoff uncertainty
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