GAME THEORY: STATIC GAMES OF INCOMPLETE INFORMATION

Guillaume Pommey

Tor Vergata University of Rome guillaume.pommey@uniroma2.eu

GAME THEORY: STATIC GAMES OF INCOMPLETE INFORMATION

Table of Contents

- 1. Introducing example
- 2. Types and payoffs
- 3. Beliefs
- 4. Normal-form representation: Definition
- 5. Strategies and expected payoffs
- 6. Bayesian Nash Equilibrium
- 7. Bayesian Cournot Nash: Setting
- 8. Bidding game
- 9. A reinterpretation of mixed strategies

Introducing example

Recall the simple pure coordination game

$X\setminusY$	Jazz Club	Rock Club
Jazz Club	1,1	0,0
Rock Club	0,0	1,1

- Static game of *complete* information
 - $\circ~$ Simultaneous play
 - Perfect knowledge of the other player's payoffs

Introducing example

• What if you have a doubt about whether your friend *Y* really likes Jazz music?

1. If Y likes Jazz		2	2. If Y hates Jazz			
$X \backslash Y$	Jazz	Rock		X\Y	Jazz	Rock
Jazz	1,1	0,0		Jazz	1,-1	0,0
Rock	0,0	1,1	I	Rock	0,0	1,1

- You are *uncertain* whether you are playing game 1 or game 2.
- But you have some idea about the **likelihood of each** scenario

 $\circ\,$ You think that there is a chance of 2/3 that Y likes Jazz

What's new?

Incomplete information games

- **Incomplete information:** there is uncertainty about the payoffs of other players
 - $\circ~$ At least one player must be uncertain
 - Here X does not know for sure if Y likes or hates Jazz music.
- That is, payoffs are not common knowledge
- Other examples: Bidding games, Cournot with unknown marginal costs, Poker

Reminder: Static games of complete information

Complete information games

- Set of players $N = \{1, \ldots, n\}$
- Set of actions A₁,..., A_n
 Let A := A₁ × ··· × A_n
- Payoffs $u_i : A \to \mathbb{R}$
 - For every vector of actions (a₁,..., a_n) ∈ A player i's payoff is defined by u_i(a₁,..., a_n).
- Strategies and actions coincide in static game of CI
- (s_i^*, s_{-i}^*) is a Nash equilibrium if

 $u_i(s_i^*, s_{-i}^*) \geq u_i(s_i, s_{-i}^*)$ for all $i \in N, s_i \in S_i$

Table of Contents

- 1. Introducing example
- 2. Types and payoffs
- 3. Beliefs
- 4. Normal-form representation: Definition
- 5. Strategies and expected payoffs
- 6. Bayesian Nash Equilibrium
- 7. Bayesian Cournot Nash: Setting
- 8. Bidding game
- 9. A reinterpretation of mixed strategies

Types and payoffs

We introduce a new notion: Types

 $\triangleright\,$ conveys some information about players' characteristics

- *T_i* is player i's **Type space**
- $t_i \in T_i$ is player i's type

New definition of payoffs: $u_i : A \times T_i \to \mathbb{R}$

• For each action profile and type we write $u_i(a_1, \ldots, a_n; t_i)$

Jazz/Rock example:

$$\triangleright A_1 = A_2 = \{Jazz, Rock\}$$

$$\triangleright \ T_Y = \{t_{Y1}, t_{Y2}\} = \{\mathsf{Likes Jazz}, \mathsf{Hates Jazz}\}$$

▷
$$u_Y(J, J; t_{Y1}) = 1$$
 and $u_Y(J, J; t_{Y2}) = -1$

Types and payoffs

Richer payoff definition

We could define $u_i : A \times T \to \mathbb{R}$ where $T := T_1 \times \cdots \times T_n$

• That is $u_i(a_1, ..., a_n; t_1, ..., t_n)$

In other words, my payoff can depend on the actions of all players as well as on the type of all players.

• Jazz/Rock example: if player X dislikes the idea that player Y will hate their evening listening to jazz, we may think that player's X utility depends on player Y's type.

We can also use this definition to assume that some **actions are not available to some players** with certain types

Types and non-available actions

Example: Assume you **draw two cards in a regular deck** and then you have to play one.

- Your type represents the **cards you hold in your hands**, e.g., $t_i = \{(Ace, Ace)\}$ or $t_i = \{(Queen, Jack)\}$
- Let $A_i = \{Ace, King, Queen, \dots, 2, 1\}$
- Obviously you cannot choose $a_i = Ace$ if $t_i = \{(Queen, Jack)\}$
- We can simply say that if you play "Ace" when you do not have one, then your payoff is $-\infty$ so that this action <code>virtually disappears</code>

More generally: Any action $a_i \in A_i$ such that $u_i(a_i, a_{-i}; t_i) = -\infty$ is not available to player *i* with type t_i .

Important: What is known/unknown?

Known: Type spaces T_1, \ldots, T_n and payoff functions $u_1(a_1, \ldots, a_n; t_1, \ldots, t_n), \ldots, u_n(\cdot; \cdot)$ are all **common knowledge**.

Unknown: player *i* does not know what is t_{-i} .

- Each player knows all *possible* games
- But does not know which one is actually played

Next question: How to handle a game that contains several potential games?

Table of Contents

- 1. Introducing example
- 2. Types and payoffs

3. Beliefs

- 4. Normal-form representation: Definition
- 5. Strategies and expected payoffs
- 6. Bayesian Nash Equilibrium
- 7. Bayesian Cournot Nash: Setting
- 8. Bidding game
- 9. A reinterpretation of mixed strategies

Beliefs

Players are assumed to:

- Know their own type only (*i* knows t_i)
- Have **beliefs** about the types of the other players (t_{-i})

A belief is a **probability distribution** over the types of the other players **given my own type**.

Formally, the belief of player i of type t_i about all other players' types writes

 $p_i(t_{-i} \mid t_i) \in [0,1]$

where

$$\sum_{t_{-i}\in T_{-i}}p_i(t_{-i}\mid t_i)=1$$

Beliefs: Dependent/Independent

The notation $p_i(t_{-i} | t_i)$ allows for **interdependent** types.

If types are **independent** we usually use the more convenient notation: $p_i(t_{-i})$.

Examples:

- Independent types: You play a game with a friend to decide who will get the chocolate ice cream and who will get the vanilla one. Each knows which her/his favorite, but you are both uncertain about your friend's taste. Your belief about your friend's taste is unlikely to depend on your own taste.
- Interdependent types: You and your friend draw one card in a 3-card deck containing only one Ace, one King and one Queen. You look at your card and you see that it is the King. You deduce that your friend can only have the Ace or the Queen. Knowing your type helps you *better predict* the type of the other player.

Beliefs: Priors

How to compute $p_i(t_{-i} | t_i)$?

Usually, we first assume that players have a **common prior** on the joint distribution of types.

Let X_1, \ldots, X_n denote the random variables associated with players $1, \ldots, n$ then define:

- $p(t_1,...,t_n) := \mathbb{P}(X_1 = t_1,...,X_n = t_n)$
- for convenience, we sometimes write $p(t_1, \ldots, t_n) =: p(t_i, t_{-i})$

Naturally, $\sum_{t \in T} p(t) = 1$.

Beliefs: Priors and Bayes Rule

Common knowledge: The joint probability distribution $p(t_1, \ldots, t_n)$.

Private information: Only player *i* knows their type t_i (i.e. realization of X_i).

To form their belief, each player uses their own private information to "guess better" the types of other players.

Bayes Rule: For two players for instance

$$p_i(t_j \mid t_i) = rac{p(t_i, t_j)}{p(t_i)},$$

where $p(t_i) := \mathbb{P}(X_i = t_i)$.

Reminder: Bayes Rule

Reminder: Define a discrete probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Take any two events $A, B \in \mathcal{F}$ (s.t. $\mathbb{P}(B) \neq 0$) then Bayes' theorem writes:

$$\mathbb{P}(A \mid B) = rac{\mathbb{P}(A, B)}{\mathbb{P}(B)}$$

Useful relationships:

- $\mathbb{P}(A,B) = \mathbb{P}(B \mid A)\mathbb{P}(A)$ then $\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A)\mathbb{P}(A)}{\mathbb{P}(B)}$
- $\mathbb{P}(A) = \sum_{i=1}^{m} \mathbb{P}(A, B_i)$ where B_1, \ldots, B_m is a partition of \mathcal{F}
- A and B are independent if and only if $\mathbb{P}(A, B) = \mathbb{P}(A)\mathbb{P}(B)$

Beliefs: An Example

Two-player card game

- Deck: contains only 1 Ace, 1 King, and 1 Queen
- Each player draws one card and can privately look at it

Type spaces are $T_1 = T_2 = \{A, K, Q\}$.

Well shuffled deck: probability of drawing a card is uniform then

Beliefs: An Example

Now assume that player 1 draws a King: $t_1 = K$

- a. Player 1 learns their type (King)
- b. Player 1 knows that Player 2 cannot have a King: $t_2 \neq K$

Using this information, Player 1 forms their belief:

$$p_1(t_2 \mid t_1 = K) = rac{p(t_1 = K, t_2)}{p(t_1 = K)}$$
 for each $t_2 = A, Q$

Beliefs: An Example

For instance, let us find $p_1(t_2 = A \mid t_1 = K)$. We first compute

(a)
$$p(t_1 = K, t_2 = A) = 1/6$$

(b) $p(t_1 = K) = \sum_{t_2 = A, K, Q} p(t_1 = K, t_2)$
 $= \underbrace{p(K, A)}_{=1/6} + \underbrace{p(K, K)}_{=0} + \underbrace{p(K, Q)}_{=1/6} + = \frac{1}{3}$

Using Bayes' formula we have

$$p_1(t_2 = A \mid t_1 = K) = rac{p(t_1 = K, t_2 = A)}{p(t_1 = K)} = rac{1/6}{1/3} = rac{1}{2}$$

Similarly $p_1(K \mid K) = 0$ and $p_1(Q \mid K) = 1/2$

Table of Contents

- 1. Introducing example
- 2. Types and payoffs
- 3. Beliefs

4. Normal-form representation: Definition

- 5. Strategies and expected payoffs
- 6. Bayesian Nash Equilibrium
- 7. Bayesian Cournot Nash: Setting
- 8. Bidding game

9. A reinterpretation of mixed strategies

Normal-form representation

Definition: A static Bayesian game is defined by the following **normal-form representation**:

- Set of players $N = \{1, \ldots, n\}$
- Sets of actions A_1, A_2, \ldots, A_n
- Sets of types T_1, T_2, \ldots, T_n
- Beliefs *p*₁, *p*₂, ..., *p*_n
- (ex post) Payoffs $u_i(a_1, \ldots, a_n; t_1, \ldots, t_n)$

Normal-form representation: Example

Example: Jazz/Rock club

- Players: $N = \{X, Y\}$
- Actions: $A_i = \{Jazz, Rock\}$
- Types: $T_X = \{t_X\},\ T_Y = \{t_{Y1}, t_{Y2}\} = \{Likes Jazz, Hates Jazz\}$
- Beliefs: $p_X(t_{Y1} \mid t_X) = 2/3$, $p_Y(t_X \mid t_{Y1}) = p_Y(t_X \mid t_{Y2}) = 1$
- (ex post) Payoffs:

1. t_X , t_{Y1}		2. t_X , t_{Y2}			
$X \backslash Y$	Jazz	Rock	$X \setminus Y$	Jazz	Rock
Jazz	1,1	0,0	Jazz	1,- <mark>1</mark>	0,0
Rock	0,0	1,1	Rock	0,0	1,1

Normal-form representation

What's new: types, beliefs and type-dependent payoffs.

- ▷ Fix a type for each player (no uncertainty) and you obtain a static game of *complete* info
- ▷ Normal-form of static incomplete info games:
 - **Collection** of static games of *complete* info on which players have some belief on their probability of occurrence.

1. t_X , t_{Y1}			2. t_X , t_{Y2}				
X\Y	Jazz	Rock			$X \backslash Y$	Jazz	Rock
Jazz	1,1	0,0			Jazz	1,- <mark>1</mark>	0,0
Rock	0,0	1,1			Rock	0,0	1,1
Probability: 2/3			Probability: 1/3				

F

Table of Contents

- 1. Introducing example
- 2. Types and payoffs
- 3. Beliefs
- 4. Normal-form representation: Definition
- 5. Strategies and expected payoffs
- 6. Bayesian Nash Equilibrium
- 7. Bayesian Cournot Nash: Setting
- 8. Bidding game
- 9. A reinterpretation of mixed strategies

Equilibrium concept

We also need to redefine the **equilibrium concept** for incomplete info games.

We must redefine:

- What is a strategy;
- How to evaluate payoffs;
- Equilibrium condition.

Strategies

In static games of CI, strategies and actions coincide

• Not here, we have to redefine the notion of strategy

For each type $t_i \in T_i$, a strategy is

 $\triangleright \ s_i : T_i \rightarrow A_i \Leftrightarrow$ a strategy is a function $s_i(t_i) \in A_i$

Player *i* anticipates the fact that different types t_j of player *j* may play differently

 $\triangleright\,$ But is still uncertain which type they will face in the game

You can think of types as virtual new players in the game

- > Each type is a player who forms a strategy on their own
- \triangleright Yet, you are not sure which player you will play against

Strategies: An example

Card game: Assume players' action set is $A_i = \{Play, Withdraw\}$.

For each hand, player *i* decides what to do. For instance

$$s_i(A) = P$$
, $s_i(K) = P$, $s_i(Q) = W$.

Player *i* must also consider the fact that player *j* will have $s_j(A)$, $s_i(K)$ and $s_j(Q)$ potentially different.

Notation: For convenience, we will often denote the **strategy profile** of a player like this: *PPP*, *PPW*, *PWP*, ...

- \triangleright *PPP* means that types *A*, *K* and *Q* all decide to Play
- \triangleright *PWP* means that types *A*, *K* and *Q* decide to Play, Withdraw and Play, respectively

Expected Payoffs

We now have to model how players evaluate their utility.

 \triangleright Depends on what they know.

Information stages

- Ex ante: Player *i* knows nothing about types
- Interim: Player *i* knows their type but not the one of the other players
- **Ex post:** Player *i* knows all players' types

Recall the notation $u_i(a_1,\ldots,a_n;t_1,\ldots,t_n)$.

▷ This is defined at the **ex post** stage

Expected Payoffs

Incomplete info: Players are at the interim stage, they know

- ▷ their own type but not the other players' types
- ▷ the probability of each $t_{-i} \in T_{-i}$
- > the ex post payoffs but not which one is relevant
- > that different types may have different strategies

Expected Payoffs

Incomplete info: At the interim stage, player i of type t_i who plays s_i can compute:

- \triangleright $p_i(t_{-i} \mid t_i)$ for each $t_{-i} \in T_{-i}$
- ▷ the ex post payoff $u_i(s_i, s_{-i}(t_{-i}); t_i, t_{-i})$ for each $t_{-i} \in T_{-i}$ and each $s_{-i}(t_{-i})$

Then the **interim expected payoff** for given s_i and $s_{-i}(t_{-i})$ is obtained by *averaging* over all possible $t_{-i} \in T_{-i}$

$$\sum_{t_{-i}\in T_{-i}} p_i(t_{-i} \mid t_i) u_i(s_i, s_{-i}(t_{-i}); t_i, t_{-i})$$

Expected Payoffs: An Example

Previous card game: Assume that if you play and win you get 1, play and loose you get -1/2, withdraw you get 0 and the other player 1 (if they played).

Interim stage: Assume player 1 knows $t_1 = K$ and plays $s_1(K) = P$.

▷ If player 1 anticipates $s_2(A) = P$ and $s_2(Q) = W(s_2(K)$ is irrelevant), the relevant ex post payoffs are:

$$u_1(P, P; K, A) = -\frac{1}{2},$$

 $u_1(P, W; K, Q) = 1.$

 \triangleright Player 1 computes $p_1(A \mid K) = p_1(Q \mid K) = 1/2$ and $p_1(K \mid K) = 0$

The interim expected payoff is

$$p_1(A \mid K)u_1(P, P \mid K, A) + p_1(Q \mid K)u_1(P, W \mid K, Q)$$
$$= \frac{1}{2}(-\frac{1}{2}) + \frac{1}{2}1 = \frac{1}{4}$$

GAME THEORY: STATIC GAMES OF INCOMPLETE INFORMATION

Table of Contents

- 1. Introducing example
- 2. Types and payoffs
- 3. Beliefs
- 4. Normal-form representation: Definition
- 5. Strategies and expected payoffs
- 6. Bayesian Nash Equilibrium
- 7. Bayesian Cournot Nash: Setting
- 8. Bidding game
- 9. A reinterpretation of mixed strategies

Bayesian Nash Equilibrium: Definition

First, recall that a strategy s_i is now a function $s_i : T_i \to A_i$ \triangleright So when we say s_i , we refer to $s_i(t_i)$ for each $t_i \in T_i$

Definition: In a static Bayesian game, the strategy profile (s_1^*, \ldots, s_n^*) is a **pure-strategy Bayesian Nash Equilibrium** if

$$s_i^*(t_i) \in rgmax_{a_i \in \mathcal{A}_i} \sum_{t_{-i} \in \mathcal{T}_{-i}} p_i(t_{-i} \mid t_i) u_i(a_i, s_{-i}^*(t_{-i}); t_i, t_{-i})$$

for all $t_i \in T_i$ and $i \in N$.

Bayesian Nash Equilibrium: Intuition

More intuitively, player i

- \triangleright considers all the possible games for every possible $t_{-i} \in T_{-i}$
- ▷ computes their interim expected payoff (averaging over games using their belief) as a function of their own action a_i , type t_i and other player's strategies $s_{-i} \in S_{-i}$
- ▷ for each of their possible type $t_i \in T_i$, player *i* selects the action $a_i \in A_i$ that maximizes this interim EP to best-respond to $s_{-i} \in S_{-i}$

A strategy profile (s_1^*, \ldots, s_n^*) is a Bayesian NE when each $s_i^*(t_i)$ is actually a **best-response** to $s_{-i}^*(t_{-i})$ for all $t_i \in T_i$ and all $i \in N$

▷ In other words: no player has a **profitable deviation**

BNE: Equilibrium Strategies

Why do we consider $s_i(t_j)$ for player *i* of type $t_i \neq t_j$?

Why should we define a strategy for a type that does not exist in the game?

Simply because only player i knows that their type is t_i

▷ All other players are **uninformed** about player *i*'s type and so they must be able to anticipate what would a *potential* player *i* of type *t_j* would do, that is, *s_i(t_j)*

Parallel with dynamic games of CI

▷ Recall that we had to define a player's strategy at each decision node, even on those never played at equilibrium

BNE: Implicit timing

It is possible to represent Bayesian Games in extensive form.

The implicit timing is as follows:

- 0. Nature draws types (t_1, \ldots, t_n) according to $p(t_1, \ldots, t_n)$
- 1. Each player *i* privately learns t_i , computes beliefs and interim expected payoffs as a function of a_i and s_{-i}
- 2. Players simultaneously choose the action that maximizes their interim EP
- 3. Information is revealed and ex post payoffs $u_i(s_i^*, s_{-i}^*; t_i, t_{-i})$ are received

Example: Jazz/Rock Club

- \triangleright One type for X, two types for Y (likes or hates Jazz)
- \triangleright Beliefs: $\mathbb{P}($ "Player Y likes Jazz" $) = \alpha \in [0, 1]$

1.	t_X, t_Y	1	2.	t_X, t_{Y_2}	2
$X \backslash Y$	Jazz	Rock	$X \backslash Y$	Jazz	Rock
Jazz	1,1	0,0	Jazz	1,-1	0,0
Rock	0,0	1,1	Rock	0,0	1,1
$Prob = \alpha$		Prob	= 1 -	$\cdot \alpha$	

First, consider the two possible games separately.

▷ Two pure-strat Nash in 1.

▷ Unique pure-strat Nash in **2**.

1.	t_X, t_Y	1	2.	t_X, t_Y	2
$X \backslash Y$	Jazz	Rock	$X \setminus Y$	Jazz	Rock
Jazz	1,1	0,0	Jazz	1,- <mark>1</mark>	0,0
Rock	0,0	1,1	Rock	0,0	1,1
Ρ	rob = c	γ	Prol	b = 1 -	- α

Information: Nature draws types and

- \triangleright Only Y learns if they like or hate jazz.
- \triangleright Player X has only a belief $\alpha \in [0, 1]$ that Y likes jazz.

Player Y can **distinguish** which game is actually played Player X must **form expectations** over the outcomes

Strategies

- \triangleright Player X strategy is simply choosing J or R
- ▷ Player Y strategy is choosing a couple of strategies JJ, JR, RJ or RR

Notation: here JR means $s_2(t_{Y1}) = J$ and $s_2(t_{Y2}) = R$ for instance. The first (resp. second) letter is the strategy for the first (resp.second) type

Compute X's interim expected payoff for each action $a_X \in \{J, R\}$ and each strategy of Y (JJ, JR, RJ and RR)

1. t_X , t_{Y_1} When Player X plays J we have: X∖Y Jazz Rock Jazz 1,1 0.0 $\mu_{X}(J, JJ) = \alpha \cdot 1 + (1 - \alpha) \cdot 1 = 1$ Rock 0.0 1.1 $\mu_{\mathbf{X}}(J, JR) = \alpha \cdot \mathbf{1} + (1 - \alpha) \cdot \mathbf{0} = \alpha$ $\mathsf{Prob} = \alpha$ $\mu_X(J, RJ) = \alpha \cdot \mathbf{0} + (1 - \alpha) \cdot \mathbf{1} = 1 - \alpha$ $\mu_{\mathbf{X}}(J, RR) = \alpha \cdot \mathbf{0} + (1 - \alpha) \cdot \mathbf{0} = \mathbf{0}$ **2.** t_X , t_{Y_2} X∖Y Jazz Rock Jazz 1,-1 0,0 Rock 0.0 1.1 $Prob = 1 - \alpha$

When Player X plays R we have:

$$\mu_X(R, JJ) = \alpha \cdot 0 + (1 - \alpha) \cdot 0 = 0$$

$$\mu_X(R, JR) = \alpha \cdot 0 + (1 - \alpha) \cdot 1 = 1 - \alpha$$

$$\mu_X(R, RJ) = \alpha \cdot 1 + (1 - \alpha) \cdot 0 = \alpha$$

$$\mu_X(R, RR) = \alpha \cdot 1 + (1 - \alpha) \cdot 1 = 1$$

1. t_X , t_{Y1} X\Y Jazz Rock Jazz 1,1 0,0 Rock 0,0 1,1 Prob = α

2. t_X , t_{Y2} X\Y Jazz Rock Jazz 1,-1 0,0 Rock 0,0 1,1 Prob = $1 - \alpha$

We can create a payoff matrix as follows.

$X\setminusY$	IJ	JR	RJ	RR
J	1;(1,-1)	lpha ; (1,0)	1-lpha ; (0, $-1)$	0;(0,0)
R	0;(0,0)	1-lpha ; (0, 1)	lpha ; (1, 0)	1;(1,1)

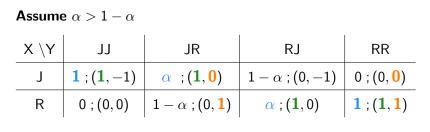
Best-responses

- Player X cannot distinguish types of Y: Best-responds to JJ, JR, RJ and RR by choosing a single action J or R
- ▷ Player Y best-responds to J and R by choosing two actions: One when $t_Y = t_{Y1}$ and one when $t_Y = t_{Y2}$

Assume	$\alpha > 1 - \alpha$			
$X \setminus Y$	IJ	JR	RJ	RR
J	1;(1,-1)	lpha ; (1,0)	1-lpha ; (0, $-1)$	0;(0,0)
R	0;(0,0)	1-lpha ; (0, 1)	lpha ; (1,0)	1;(1,1)
Player X's best-responsesPlayer Y's best-responses				

- $\triangleright R \text{ to } RJ \qquad \qquad \triangleright R \text{ to } R \qquad \qquad \triangleright R \text{ to } R$

\triangleright R to RR



Player X's best-responses	Player Y's best-responses			
⊳ J to JJ	Type t_{Y1}	Type t_{Y2}		
⊳ J to JR	\triangleright J to J	$\triangleright \mathbf{R}$ to J		
⊳ R to <i>RJ</i>	\triangleright R to <i>R</i>	⊳ R to R		
\triangleright R to <i>RR</i>				

Two pure-strat. Bayesian Nash Equilibria for $\alpha > 1 - \alpha$.

- \triangleright (*J*, *JR*)
- \triangleright (R, RR)

Notice that $\alpha > 1 - \alpha \Leftrightarrow \alpha > 1/2$.

- \triangleright (*J*, *JR*) is a BNE as long as *X* believes it is more likely that *Y* likes Jazz than hates it.
- $\triangleright\,$ It is easy to show that if we assume instead that $\alpha < 1/2$, then only (R,RR) is a BNE

Consider now the following game.

$1 \setminus 2$	L	R	$1 \setminus 2$	L	R
Н	2,1	0,0	Н	2,0	0,2
D	0,0	1,2	D	0,1	1,0
Pro	bb=1	./2	Pro	b=1	./2

Assume player 1 has **no information** while player 2 knows which game is played.

- \triangleright Player 1 has to choose H or D
- ▷ Player 2 has to choose *LL*, *LR*, *RL* or *RR*

Compute 1's interim expected payoff for each action $a_1 \in \{H, Q\}$ and each strategy of Y (LL, LR, RL and RR).

When Player 1 plays H we have:	$1 \backslash 2$	L	R
	Н	2,1	0,0
$\mu_1(H,LL) = rac{1}{2} \cdot 2 + rac{1}{2} \cdot 2 = 2$	D	0,0	1,2
$\mu_1(H, LR) = rac{1}{2} \cdot 2 + rac{1}{2} \cdot 0 = 1$		bb = 1	
$\mu_1(H, RL) = rac{1}{2} \cdot 0 + rac{1}{2} \cdot 2 = 1$	$1 \backslash 2$	L 2,0	R
	Н	2,0	0,2
$\mu_1(H, RR) = rac{1}{2} \cdot 0 + rac{1}{2} \cdot 0 = 0$	D	0,1	1,0
	Pro	bb = 1	/2

When Player 1 plays D we have:

$$\mu_1(D, LL) = \frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 0 = 0$$

$$\mu_1(D, LR) = \frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 1 = \frac{1}{2}$$

$$\mu_1(D, RL) = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 0 = \frac{1}{2}$$

$$\mu_1(D, RR) = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1 = 1$$

$$1 \ 2 \ L \ R$$

H 2,1 0,0
D 0,0 1,2
Prob = 1/2

 $\mathsf{Prob}=1/2$

$1 \setminus 2$	LL	LR	RL	RR
Н	2;(1,0)	1;(1,2)	1;(0,0)	0;(0,2)
D	0;(0,1)	$\frac{1}{2}$; (0, 0)	$\frac{1}{2}$; (2, 1)	1;(2,0)

Player 1's best-responses	Player 2's bes	t-responses
\triangleright <i>H</i> to <i>LL</i>	Type 1	Type 2
\triangleright <i>H</i> to <i>LR</i>	\triangleright <i>L</i> to <i>H</i>	$\triangleright R$ to H
\triangleright H to RL	\triangleright <i>R</i> to <i>D</i>	\triangleright <i>L</i> to <i>D</i>

 \triangleright D to RR

GAME THEORY: STATIC GAMES OF INCOMPLETE INFORMATION

$1 \setminus 2$	LL	LR	RL	RR
Н	2 ; (1 , 0)	1;(1,2)	1 ;(0,0)	0;(0, <mark>2</mark>)
D	0;(0, 1)	$\frac{1}{2}$; (0,0)	$\frac{1}{2}$; (2, 1)	1 ; (2 , 0)

Player 1's best-responses	Player 2's bes	t-responses
⊳ H to LL	Type 1	Type 2
\triangleright H to <i>LR</i>	\triangleright L to <i>H</i>	⊳ R to H
⊳ H to <i>RL</i>	\triangleright R to <i>D</i>	\triangleright L to D

⊳ D to RR

Unique **pure-strat BNE** is (**H**, **LR**)

Table of Contents

- 1. Introducing example
- 2. Types and payoffs
- 3. Beliefs
- 4. Normal-form representation: Definition
- 5. Strategies and expected payoffs
- 6. Bayesian Nash Equilibrium
- 7. Bayesian Cournot Nash: Setting
- 8. Bidding game
- 9. A reinterpretation of mixed strategies

Bayesian Cournot Nash

We can revisit the classical Cournot competition problem in an **incomplete information environment**.

Assume firm 1 is uncertain about firm 2's marginal cost.

 $\triangleright \ c_2 \in \{c_L, c_H\}$ with $c_L < c_H$

 $\triangleright \ c_1 = c$ is common knowledge

Cournot Game:

▷ Players:
$$N = {$$
Firm 1, Firm 2 $}$

 \triangleright Actions: quantities q_1 , $q_2 \in [0, +\infty)$

▷ Types: $c_1 \in T_1 = \{c\}$, $c_2 \in T_2 = \{c_L, c_H\}$

$$\triangleright$$
 Beliefs: $p_1(c_H) = \theta \in [0, 1]$

 \triangleright Ex payoffs: $\pi_i(q_1, q_2; c_i)$

Bayesian Cournot Nash: Setting

Inverse demand: P(Q) = a - Q with $Q = q_1 + q_2$.

Ex post profits write, for $c_1 = c$ and $c_2 = c_L, c_H$,

$$\pi_1(q_1, q_2; c_1) = [a - q_1 - q_2 - c]q_1,$$

$$\pi_2(q_1, q_2; c_2) = [a - q_1 - q_2 - c_2]q_2.$$

Each firm maximizes profits but be careful!

- ▷ Firm 1 must consider both types of firm 2, i.e., consider a different strategy for each type of firm 2 and then take the average profit between the two possible scenario
- Firm 2 must consider firm 1's strategy (only one) and faces two different maximization problems for each of its type

Bayesian Cournot Nash: Firm 2's problem

Firm 2 faces two maximization problems depending on its type

- \triangleright Two strategies to choose: q_2^L and q_2^H
- \triangleright Considers only one strategy for firm 1: q_1

Type
$$c_L$$
: $\max_{\substack{q_2^L}} [a - q_1 - q_2^L - c_L] q_2^L$,
Type c_H : $\max_{\substack{q_2^H}} [a - q_1 - q_2^H - c_H] q_2^H$.

Bayesian Cournot Nash: Firm 1's problem

Firm 1 faces a unique maximization problem.

- \triangleright Only sets one strategy: q_1
- \triangleright Considers two strategies for firm 2: q_2^L and q_2^H
- > Averages over possible games according to its belief

$$\max_{q_1} \theta[a - q_1 - q_2^H - c]q_1 + (1 - \theta)[a - q_1 - q_2^L - c]q_1.$$

It should be now clear to you why we **must define strategies for every possible types**, even for the ones that are not in the game after nature have drawn them.

 \triangleright Firm 1 needs to consider two different potential strategies for firm 2 to compute its expected payoff even if firm 2 knows that it is of type c_H .

Bayesian Cournot Nash: Firm 2's Best-response

Let us compute the **two possible best-response** for firm 2's.

First-order conditions for each type are:

Type
$$c_L$$
 FOC : $a - q_1 - 2q_2^L - c_L = 0$,
Type c_H FOC : $a - q_1 - 2q_2^H - c_H = 0$.

Then, best-response for each type writes:

Type
$$c_L$$
: $q_2^L(q_1) = \frac{a - c_L - q_1}{2}$,
Type c_H : $q_2^H(q_1) = \frac{a - c_H - q_1}{2}$.

Bayesian Cournot Nash: Firm 1's Best-response

Let us now compute the **best-response** of firm 1's.

The first-order condition for the interim expected profit writes

FOC:
$$\theta \left[a - 2q_1 - q_2^H - c \right] + (1 - \theta) \left[a - 2q_1 - q_2^L - c \right] = 0$$
$$\Leftrightarrow \quad a - 2q_1 - c - \theta q_2^H - (1 - \theta)q_2^L = 0$$

Solving for q_1 gives

$$q_1(q_2^L,q_2^H) = rac{a-c- heta q_2^H - (1- heta)q_2^L}{2}$$

Notice that Firm 1's best-response is a function of q_2^L and q_2^H .

Each quantity is weighted by its probability of occurrence in the BR function

To obtain the **BNE**, simply solves the following linear system of **three equations and three unknowns**.

$$egin{cases} q_1(q_2^L,q_2^H) &= rac{a-c- heta q_2^H-(1- heta)q_2^L}{a-c_L-q_1}\ q_2^L(q_1) &= rac{a-c_L-q_1}{2}\ q_2^H(q_1) &= rac{a-c_H-q_1}{2} \end{cases}$$

Put differently we look for a fixed point:

$$egin{cases} q_1(q_2^L(q_1),q_2^H(q_1))&=q_1\ q_2^L(q_2^L,q_2^D)&=q_2^L\ q_2^H(q_2^L,q_2^H)&=q_2^H \end{cases}$$

GAME THEORY: STATIC GAMES OF INCOMPLETE INFORMATION

Start by plugging $q_2^L(q_1)$ and $q_2^H(q_1)$ in $q_1(q_2^L(q_1), q_2^H(q_1))$:

$$q_1 = \frac{a-c}{2} - \frac{\theta}{2} \left(\frac{a-c_H-q_1}{2}\right) - \frac{1-\theta}{2} \left(\frac{a-c_L-q_1}{2}\right)$$
$$q_1 \left(1 - \frac{\theta}{4} - \frac{1-\theta}{4}\right) = \frac{2a-2c-\theta a - (1-\theta)a + \theta c_H + (1-\theta)c_L}{4}$$

Simplifying we obtain

$$q_1^* = \frac{\mathsf{a} - 2\mathsf{c} + \theta\mathsf{c}_{\mathsf{H}} + (1 - \theta)\mathsf{c}_{\mathsf{L}}}{3}$$

Now plugging q_1^* in each best-response for firm 2 yields:

$$q_{2}^{L} = \frac{a - c_{L}}{2} - \frac{1}{2} \left(\frac{a - 2c + \theta c_{H} + (1 - \theta)c_{L}}{3} \right)$$
$$q_{2}^{H} = \frac{a - c_{H}}{2} - \frac{1}{2} \left(\frac{a - 2c + \theta c_{H} + (1 - \theta)c_{L}}{3} \right)$$

Simplifying and rearranging we get

$$q_{2}^{L*} = \frac{a - 2c_{L} + c}{3} - \frac{\theta}{6} (c_{H} - c_{L})$$
$$q_{2}^{H*} = \frac{a - 2c_{H} + c}{3} + \frac{1 - \theta}{6} (c_{H} - c_{L})$$

GAME THEORY: STATIC GAMES OF INCOMPLETE INFORMATION

The Bayesian Nash Equilibrium is therefore given by

$$egin{aligned} q_1^* &= rac{a-2c+ heta c_H+(1- heta) c_L}{3} \ q_2^{L*} &= rac{a-2c_L+c}{3} - rac{ heta}{6} (c_H-c_L) \ q_2^{H*} &= rac{a-2c_H+c}{3} + rac{1- heta}{6} (c_H-c_L) \end{aligned}$$

The uninformed player, firm 1, plays an average quantity.

The **informed** player, firm 2, plays a **different quantity** when of different type

If we remove uncertainty, for instance:

 $\triangleright \theta = 1$: Firm 2 is for sure of type c_H .

Then

$$q_1^* = rac{a - 2c + heta c_H + (1 - heta) c_L}{3} = rac{a - 2c + c_H}{3}$$

and

$$q_2^{H*} = rac{a-2c_H+c}{3} + rac{1- heta}{6}(c_H-c_L) = rac{a-2c_H+c}{3}$$

We exactly obtain the Cournot quantities in a duopoly with certain marginal costs c and c_H for firm 1 and firm 2, respectively

Notice also that, under **incomplete information**, Firm 2:

- ▷ of type c_H produces more than it would produce if information was complete
- \triangleright of type c_L produces **less** than it would produce if information was complete

This stems from the fact that firm 1 produces an average quantity to adapt each possible cases of firm 2 and firm 2 can use this uncertainty to its own benefit

Table of Contents

- 1. Introducing example
- 2. Types and payoffs
- 3. Beliefs
- 4. Normal-form representation: Definition
- 5. Strategies and expected payoffs
- 6. Bayesian Nash Equilibrium
- 7. Bayesian Cournot Nash: Setting
- 8. Bidding game
- 9. A reinterpretation of mixed strategies

Bidding game/Auction

A very interesting application of Bayesian game: Auctions

Two potential buyers i = 1, 2 are interested in a painting.

 \triangleright Each has a **valuation** $v_i \in [0, 1]$ for the painting

 \triangleright v_i is private information to *i*

The seller (or auctioneer) proposes the following **selling mechanism**:

- \triangleright Each agent i = 1, 2 must communicate their **bid** $b_i \in \mathbb{R}_+$ simultaneously
- The agent with the **highest bid** receives the painting and pays what the amount of their bid to the seller

Bidding game/Auction

We call this bidding game a **sealed-bid first-price** auction.

- Sealed-bid: Simultaneous bidding, no player can observe the other player's bid
- First-price: The winner pays what they bid, that is, the highest (or first) price

Other types of auctions exist:

- Sealed-bid second-price auction: Simultaneous bidding, highest bidder wins but pays the second highest price
- ▷ **All-pay auctions:** Several forms but potentially all bidders may pay/receive something even when they loose
- Descending auctions: The auctioneer offers a very high price and decreases it until someone raises their hand to buy at this price

Sealed-bid first-price auction: Payoffs

We can write agent i's ex post payoff as follows: v

$$u_i(b_i, b_j; v_i) = egin{cases} v_i - b_i & ext{if } b_i \geq b_j \ 0 & ext{if } b_j < b_j \end{cases}$$

(what happens when $b_i = b_j$ does not matter as this event has zero measure).

Each player faces the following trade-off:

- > communicate a low bid to pay less if awarded the painting
- communicate a high bid to have a higher bid than the other player and be awarded the painting

Sealed-bid first-price auction: Complete information?

 $\ensuremath{\text{Two-sided}}$ incomplete information is what makes the auction interesting

Assume each bidder perfectly knows both v_1 and v_2

- ▷ If $v_1 \ge v_2$, bidder 1 will choose $b_1 = v_2$, win the auction for sure and pay the lowest possible price
- ▷ If $v_1 < v_2$, bidder 2 will choose $b_2 = v_1$, win the auction for sure and pay the lowest possible price

It seems more *realistic* to assume that you cannot know for sure the valuation of the other agent

Sealed-bid first-price auction: Normal-form

Normal-form representation

- Players: $N = \{1, 2\}$
- Action space: $A_i = \mathbb{R}_+$
- Type space: $T_i = [0, 1]$, the type is $v_i \in T_i$
- Beliefs: $v_i \sim \mathcal{U}[0, 1]$
- Ex post payoffs:

$$u_i(b_i, b_j; v_i) = \begin{cases} v_i - b_i & \text{if } b_i \ge b_j \\ 0 & \text{if } b_j < b_j \end{cases}$$

SB FP auction: Strategies and Expected Payoffs

Recall that each type must form a strategy, i.e., $s_i : T_i \rightarrow A_i$

 \triangleright A strategy here is $b_i(v_i)$

Player *i* takes $b_j(v_j)$ as given and takes expectation over all $v_j \in [0, 1]$ to obtain their **interim expected payoff**:

$$egin{aligned} U_i(b_i;v_i) &= \mathbb{P}(b_i \geq b_j(v_j))[v_i - b_i] + \mathbb{P}(b_i < b_j(v_j)) \cdot 0 \ &= \mathbb{P}(b_i \geq b_j(v_j))[v_i - b_i]. \end{aligned}$$

The **trade-off** is clear in $U_i(b_i; v_i)$: Increasing b_i ,

- \triangleright increases $\mathbb{P}(b_i \geq b_j(v_j))$
- \triangleright decreases $[v_i b_i]$

SB FP auction: Equilibrium

There is a general solution to this problem.

But it requires some technical tricks that are beyond the scope of this class

Instead, let us focus on a particular solution:

▷ **Linear strategies:** $b_i(v_i) = a_i + c_i v_i$ for i = 1, 2

In other words, we **postulate** that $b_j(v_j) = a_j + c_j v_j$ is an equilibrium strategy for player *i* and we

▷ investigate player *i*'s best-response

▷ check that player *i*'s best-response is a linear strategy

Fix player j's strategy to $b_j(v_j) = a_j + c_j v_j$.

Then we can easily compute

$$egin{aligned} \mathbb{P}(b_i \geq b_j(v_j)) &= \mathbb{P}(b_i \geq a_j + c_j v_j) \ &= \mathbb{P}(v_j \leq rac{b_i - a_j}{c_j}) \ &= rac{b_i - a_j}{c_j}. \end{aligned}$$

Again, notice that player *i*'s **winning probability** is increasing in b_i .

Reminder: The CDF of a uniform distribution on [0, 1] writes F(x) = x for all $x \in [0, 1]$. Hence $\mathbb{P}(Z \le z) = \int_0^1 \mathbb{1}_{\{x \le z\}} dF(x) = \int_0^z 1 dx = z$.

For player *i*, there is **no uncertainty** on $(v_i - b_i)$.

Therefore, player *i*'s **expected payoff** as a function of a_i and v_i is

$$U_i(b_i; v_i) = \frac{b_i - a_j}{c_j} [v_i - b_i].$$

Player *i* chooses $b_i(v_i) \in \arg \max_{b_i \in \mathbb{R}_+} U_i(b_i; v_i)$

The solution to the maximization problem $b_i(v_i)$ is a function of v_i , that is, solving the max problem yields player *i*'s best-response for any given v_i

The first-order condition of *i*'s problem writes

$$\frac{1}{c_j}[v_i-b_i]-\frac{b_i-a_j}{c_j}=0.$$

Solving for b_i yields

$$b_i(v_i)=\frac{a_j+v_i}{2}$$

By a symmetrical reasoning we get

$$b_j(v_j) = \frac{a_i + v_j}{2}$$

We have to find the parameter values a_i , a_j , c_i and c_j .

By simple identification:

As $b(v_i) = a_i + c_i v_i = \frac{a_j}{2} + \frac{1}{2}v_i$, we must have $a_i = \frac{a_j}{2}$ $c_i = \frac{1}{2}$.

As $b(v_j) = a_j + c_j v_j = \frac{a_i}{2} + \frac{1}{2}v_j$, we must have

$$a_j = \frac{a_i}{2}$$
 $c_j = \frac{1}{2}$

Then
$$c_i = c_j = \frac{1}{2}$$
.
Also $a_i = \frac{a_j}{2}$ and $a_j = \frac{a_i}{2}$ are equivalent to
$$2a_i = a_j = \frac{a_i}{2}.$$

It is clear that $a_i = a_j = 0$.

The linear equilibrium strategies are then

$$b_i(v_i) = rac{v_i}{2},$$

 $b_j(v_j) = rac{v_j}{2}.$

Table of Contents

- 1. Introducing example
- 2. Types and payoffs
- 3. Beliefs
- 4. Normal-form representation: Definition
- 5. Strategies and expected payoffs
- 6. Bayesian Nash Equilibrium
- 7. Bayesian Cournot Nash: Setting
- 8. Bidding game

9. A reinterpretation of mixed strategies

Mixed strategies in CI games

Complete information: Recall that in a CI game, a mixed strategy is a probability distribution on pure strategies:

- \triangleright A mixed strategy is $\sigma_i \in \Delta(A_i)$
- $\triangleright \text{ Where } \Delta(A_i) := \left\{ (\alpha_1, \dots, \alpha_{|A_i|}) \in [0, 1]^{|A_i|} \mid \sum_{i=1}^{|A_i|} \alpha_i = 1 \right\}$

In this context, we assumed that players were

- $\triangleright\,$ completely informed on the payoffs of the other players
- $\triangleright\,$ randomizing their action at equilibrium

No uncertainty in the fundamentals of the game

▷ Uncertainty arises endogenously as an equilibrium strategy

Mixed strategies in CI games

Sometimes, it may be difficult to interpret what randomizing means.

▷ Do players really flip a coin to determine their strategy?

Harsanyi (1973) proposed an **interpretation for mixed strategies** in CI games.

- Mixed strategies can instead represent players' payoff uncertainty as in an incomplete information game
- > This holds for a *small* level of uncertainty

Mixed strategies in CI games

More precisely, Harsanyi (1973) showed that:

(almost) **every mixed-strategy equilibrium** in a complete information game can be *approached* by a Bayesian game for which uncertainty *is small*.

That is, **equilibrium strategies of the Bayesian game will converge** to the equilibrium mixed strategies of the complete information game.

We will be more specific about what we mean by "small" and "converge"

Consider the following game of **complete information**:

$1 \backslash 2$	L	R
Н	2,1	0,0
D	0,0	1,2

- Two pure-strategy Nash equilibria $\{H, L\}$ and $\{D, R\}$
- One mixed-strategy Nash equilibrium in which player 1 plays *H* with probability $\frac{2}{3}$ and player 2 plays *L* with probability $\frac{1}{3}$
 - $\triangleright~$ This is the one that interests us
 - Do you think anyone would play this instead of pure-strategy NE? Would you?

Consider now the following game of incomplete information:

•
$$N = \{1, 2\}$$

•
$$A_1 = \{H, D\}, A_2 = \{L, R\}$$

•
$$T_1 = T_2 = [0, x]$$
, with $x \in \mathbb{R}_+$

•
$$t_i \sim \mathcal{U}[0, x], i = 1, 2$$

This game is *almost* like the complete information game except that **two payoffs are now uncertain**

 $\begin{array}{cccc} 1 \ 2 & L & R \\ H & 2 + t_1, \ 1 & 0, 0 \\ D & 0, 0 & 1, \ 2 + t_2 \end{array}$

Uncertainty is modeled through the $t_i \sim \mathcal{U}[0, x]$.

 \triangleright i.e., uniform distribution over the interval [0, x]

Notice that uncertainty is *reduced* when x decreases.

▷ Extreme case: when *x* goes to 0 then **uncertainty vanishes**

Our goal is to construct a specific **pure-strategy Bayesian game** and then see what happens **when uncertainty vanishes**.

Assume each player plays the following threshold strategy:

- \triangleright Player 1 plays *H* whenever $t_1 \ge a$
- ▷ Player 2 plays *R* whenever $t_2 \ge b$

for some *a*, $b \in \mathbb{R}_+$

Player 1 plays H with probability

$$\mathbb{P}(t_1 \geq a) = 1 - \mathbb{P}(t_1 \leq a)$$
 $= 1 - rac{a}{x}$
 $= rac{x-a}{x}$

Similarly, Player 2 plays R with probability

$$\mathbb{P}(t_2 \geq b) = \frac{x-b}{x}$$

Let us now find the BNE.

Assume Player 2 plays the threshold strategy "play R if $t_2 \geq b$ ".

Then player 1's expected payoff when playing H is

$$\mu_1(H, \operatorname{play} R \text{ if } t_2 \ge b) = \mathbb{P}(t_2 < b)[2+t_1] + \mathbb{P}(t_2 \ge b) \cdot 0$$

 $= \frac{b}{x}[2+t_1].$

Player 1's expected payoff when playing D is

$$egin{aligned} \mu_1(R, \mathsf{play}\; R \; \mathsf{if}\; t_2 \geq b) &= \mathbb{P}(t_2 < b) \cdot 0 + \mathbb{P}(t_2 \geq b) \cdot 1 \ &= rac{x-b}{x}. \end{aligned}$$

For player 1, playing H is optimal whenever

$$\mu_1(H, \text{play } R \text{ if } t_2 \ge b) \ge \mu_1(D, \text{play } R \text{ if } t_2 \ge b)$$

$$\Leftrightarrow \quad \frac{b}{x} [2+t_1] \ge \frac{x-b}{x}$$

$$\Leftrightarrow \quad t_1 \ge \frac{x}{b} - 3.$$

A similar reasoning for player 2 (fixing player 1's strategy to the threshold one) yields that they play R whenever

$$t_2 \geq \frac{x}{a} - 3.$$

Fortunately, the two conditions correspond to the **threshold** strategies that we have postulated when we set $a = \frac{x}{b} - 3$ and $b = \frac{x}{a} - 3$.

Solving the system (involves a quadratic equation) yields

$$\mathbb{P}(t_1 \geq a) = \mathbb{P}(t_2 \geq b) = 1 - rac{-3 + \sqrt{9 + 4x}}{2x}.$$

Now if x converges to 0, uncertainty vanishes and we obtain

$$\mathbb{P}(t_1 \geq a) = \mathbb{P}(t_2 \geq b) = \frac{2}{3}.$$

That is, the **pure strategies of the Incomplete information** game are the same as the mixed strategies of the Complete information game.

Technical note: $\lim_{x\to 0} \frac{-3+\sqrt{9+4x}}{2x}$ is obtained using l'Hopital's Rule which states that $\lim_{x\to c} \frac{f(x)}{g(x)} = \lim_{x\to c} \frac{f'(x)}{g'(x)}$ whenever $\lim_{x\to c} f(x) = \lim_{x\to c} g(x) = 0$ and $g'(x) \neq 0$)

Therefore the mixed-strategy Nash equilibrium in the complete information game can also be seen as a pure-strategy Bayesian Nash equilibrium when there is a **very small amount of uncertainty of some payoffs**.

With this interpretation:

• Mixed-strategy in CI game can express the fact that players have a small amount of payoff uncertainty