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1. NOTATIONS

Let us first introduce a couple of notations that will be maintained for most of these
class notes.

Players. The set of players is denoted by N := t1, . . . ,nu, where n is the number of
players and i P N denotes an element of this set.

Valuations. Each player has a valuation vi P Vi := [0, vi] where Vi � R+. Valuations
are independent and distributed according to the absolutely continuous cumulative
distribution function Fi(vi). Let fi = F 1i denote the associated probability distribution
function.

Vectors and sets. For any vector x := (x1, . . . , xK) P X where X :=
�k=K
k=1 Xk, define

X�k :=
�
j�k

Xj and x�k P X�k. We will also write x = (xk, x�k) for any kwhere the order

of the original vector x = (x1, . . . , xK) remains unchanged.

Information stages. We will consider the three usual information stages: ex post, the
interim, and ex ante stages. At the ex post stage, information is supposed to be common
knowledge to all players. At the interim stage, each player knows their valuations but
not that of the other players. At the ex ante stage, players are fully uninformed about
valuations, including their own.

For any function q : XÑ Z, we will denote by q(x1, . . . , xK) and evaluation of q at
the ex post stage. LetQ(xk) := E�kq(x) denote the evaluation at the interim stage where
E�k is the expectation operator over all x�k P X�k. Finally, let Q := Eq(x) = EkQ(xk)

denote the evaluation at the ex ante stage.
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3. ONE-SIDED PRIVATE INFORMATION ENVIRONMENTS

3.1. General allocation mechanisms

There is one principal (uninformed party) and a n agents whose set is denoted by
N := t1, . . . ,nu. They are all assumed to be risk neutral.

Each agent i P N has private information over their valuation vi P Vi := [0, vi].
Let V :=

�
iPN Vi and V�i :=

�
j�i Vj. It is common knowledge that vi is distributed

according to the absolutely continuous CDF Fi(vi) and let fi = F 1i be the pdf. Valuations
are assumed to be independently distributed. Let F�i(v�i) and F(v) be the CDF of
v�i P V�i and v P V , respectively.

We further assumed that agents have quasi-linear utility in money, that is, agent i
with valuation vi gets utility vix+ t, where x P [0, 1] is the quantity/probability of the
good consumed by i and t P R is some monetary transfer.

For now, we focus on the particular problem of allocating an indivisible good owned
by the principal.

Definition 1 An allocation mechanism is a triple (M, x̃, t̃) where

• M :=
�
iPNMi is the set of messages, andMi is the set of messages available to agent i.

• x̃ :MÑ [0, 1]n is the allocation rule, and x̃i :MÑ [0, 1] is the allocation rule specific
to agent i. We have that x̃ := (x̃1, . . . , x̃n).

• t̃ :MÑ Rn is the transfer rule, and t̃i :MÑ R is the transfer rule specific to agent i.
We have that t̃ := (t̃1, . . . , t̃n),
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and the resource constraint is
°
iPN x̃i(m) ¤ 1 for allm PM.

In a mechanism (M, x̃, t̃), the ex post utility of agent i with valuation vi when the
vector of messages ism PM, writes

ui(m) := vixi(m) + ti(m).

The principal can choose and commit to any allocation mechanism (M, x̃, t̃). The
problem is obviously a complicated one as we put no restriction on the set of messages
M. The next section establishes a fundamental result that makes this problem tractable.

3.2. The revelation principle

We show here that any outcome that can be implemented by a mechanism (M, x̃, t̃),
can also be implemented by a simpler mechanism. First, we have to define what is an
outcome of a mechanism. Take any mechanism (M, x̃, t̃) and assume that there exists
(at least one) a Bayesian Nash equilibrium among agents. That is, there exists a strategy
mi : Vi Ñ Mi for all i P N such that for all i P N, vi P Vi, and m̂i P Mi, the following
holds:

E�i[vix̃i(mi(vi),m�i(v�i))+t̃i(mi(vi),m�i(v�i))]

¥ E�i[vix̃i(m̂i,m�i(v�i)) + t̃i(m̂i,m�i(v�i))],

wherem�i(v�i) : V�i ÑM�i. Letm(v) := mi(vi),m�i(v�i).

Definition 2 We say that a mechanism (M, x̃, t̃) implements an outcome ã(v) := (x̃(m(v)), t̃(m(v)))

ifm(v) is a BNE strategy induced by (M, x̃, t̃).

We now introduce a convenient special class of mechanisms.

Definition 3 A direct mechanism is a triple (V , x, t). That is, M = V , Mi = Vi, x : V Ñ

[0, 1]n and t : V Ñ Rn. Later, we also let (x, t) denote a direct mechanism for convenience.

Definition 4 A direct mechanism (V , x, t) is said to be truthful or incentive compatible if
the BNE induced by (V , x, t) is such thatmi(vi) = vi for all vi P Vi and i P N.

The following statement is the main result of this section.

Theorem 1 (Revelation principle) Any outcome (x̃(m(v)), t̃(m(v))) obtained with a mech-
anism (M, x̃, t̃) can be implemented by a direct incentive compatible mechanism.
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Proof. Consider any mechanism (M, x̃, t̃) and letm(v) denote a BNE strategy induced
by this mechanism. First notice that, by definitionm : V ÑM so that

$&
%
x̃(m(v)) : V Ñ [0, 1]n

t̃(m(v)) : V Ñ Rn.

If we define x := x̃ �m and t := t̃ �m, we directly have that (x, t) is a direct mechanism
that implements the outcome ã(v) := (x̃(m(v)), t̃(m(v))) = (x(v), t(v)) for all v P V .

Second, notice that when agent i does not follow the BNE strategy mi(vi) and
deviates to m̂i P Mi we can assume that agent chooses mi(v̂i) = m̂i.1 Hence, by
definition ofm(v) we have that

E�i[vix̃i(mi(vi),m�i(v�i))+t̃i(mi(vi),m�i(v�i))]

¥ E�i[vix̃i(mi(v̂i),m�i(v�i)) + t̃i(mi(v̂i),m�i(v�i))],

for all i P N, vi P Vi and v̂i P Vi. By definition of (x, t), the above inequality immediately
rewrites as follows:

E�i[vixi(vi, v�i) + ti(vi, v�i)] ¥ E�i[vixi(v̂i, v�i) + ti(v̂i, v�i)],

for all i P N, vi P Vi and v̂i P Vi. It immediately follows that (x, t) is incentive compatible
as reporting vi P Vi is a BNE strategy induced by (x, t). ■

3.3. Incentive compatibility constraints and the revenue equivalence theorem

The revelation principle greatly simplifies the problem by restricting the set of allocation
mechanisms to that of direct incentive compatible mechanisms. Yet, the tractability
of incentive constraints is still an issue and we cannot immediately apply standard
optimizing techniques. Indeed, the incentive compatibility constraint for any direct
mechanism (x, t) writes

E�iui(vi, v�i) ¥ E�iui(v̂i, v�i), (IC)

for all i P N, vi P Vi and v̂i P Vi. Hence, we have an infinite number of such inequalities
and they implicitly define constraints on the allocation and transfer rules. We now
proceed to derive an alternative characterization of the incentive constraints.

First, let Xi(vi) := E�ixi(vi, v�i) and Ti(vi) := E�iti(vi, v�i) define the interim (ex-

1If there is no type v̂i such that the BNE strategymi(v̂i) is equal to m̂i, it is without loss of generality
to assume that v̂i is anything in Vi.
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pected) allocation and transfer rule, respectively. We let

Ui(v̂i; vi) := viXi(v̂i) + Ti(v̂i),

denote the interim (expected) utility of agent iwith valuation vi who reports v̂i, when
all other agents j � i are assumed to report truthfully. Hence the incentive compatibility
constraints rewrites as follows:

Ui(vi; vi) ¥ Ui(v̂i; vi)

ô viXi(vi) + Ti(vi) ¥ viXi(v̂i) + Ti(v̂i),

for all i P N, vi P Vi and v̂i P Vi.

Monotonicity constraint. We derive a fundamental first necessary condition that
stems from incentive compatibility constraints. Take any direct mechanism (x, t), if is
incentive compatible then for any (vi, v̂i) P V2

i we have, by definition,

viXi(vi) + Ti(vi) ¥ viXi(v̂i) + Ti(v̂i)

v̂iXi(v̂i) + Ti(v̂i) ¥ v̂iXi(vi) + Ti(vi).

Summing these two constraints and simplifying yields that

(vi � v̂i)(Xi(vi)�Xi(v̂i)) ¥ 0,

for all (vi, v̂i) P V2
i and all i P N. It immediately follows that this condition implies that

Xi(vi) is nondecreasing in vi, (IC1)

for all i and vi. In words, agents with a higher valuation must have a higher interim
probability of receiving the good for the mechanism to be incentive compatible.

’Utility’ characterization. The second necessary condition we derive from the IC
constraints is a condition on the ’shape’ of the agents’ utility in any incentive compatible
mechanism.

Notice that by definition of incentive compatibility, we must have that

Ui(vi; vi) = max
v̂iPVi

Ui(v̂i; vi)

= max
v̂iPVi

viXi(v̂i) + Ti(v̂i),

for all i and vi. In words, we want that the utility of type vi is maximal when reporting
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v̂i = vi (i.e., the ’truth’). For convenience, we usually define Ui(vi) = Ui(vi; vi) as the
interim utility of agent iwhen they report truthfully. Hence we have that,

Ui(vi) = max
v̂iPVi

viXi(v̂i) + Ti(v̂i).

Applying the envelope theorem (Milgrom and Segal, 2002), we obtain that:

• Ui is absolutely continuous and thus differentiable almost everywhere.

• U 1

i(vi) = Xi(v̂i) |v̂i=vi = Xi(vi) holds almost everywhere.

From the second property, we deduce thatUi is nondecreasing and convex.2 Integrating
the expression for U 1

i over [v̂i, vi] � Vi, we get

Ui(vi) = Ui(v̂i) +

» vi
v̂i

Xi(y)dy.

Without loss of generality, we will consider this equation at v̂i = 0 so that

Ui(vi) = Ui(0) +
» vi

0
Xi(y)dy (IC2)

Up to a constant, this IC2 fully characterizes the utility that type vi must receive under
an incentive compatible mechanism with interim allocation rule Xi. The value ofUi(0) is
the only element that remains unconstrained by IC. Given that Ui(vi) is nondecreasing,
Ui(0) is the lowest utility that an agent can obtain in this mechanism. We will refer to
this agent (type vi = 0) as agent i’s worst-off type.

IC characterization. We have shown that IC implies both IC1 and IC2. We can also
prove that the reverse is true, that is, IC1 and IC2 are necessary and sufficient condition
for a mechanism to be incentive compatible.

Proposition 1 A direct mechanism is incentive compatible if and only if it is such that both
IC1 and IC2 hold.

Proof. The ’only if’ part has been already proved. The ’if’ part goes as follows. Assume
that IC1 and IC2 are satisfied for a direct mechanism (x, t). Then for any vi, v̂i P Vi, IC2

2Nondecreasingness immediately follows from IC1. Convexity can be proved as follows. By definition,
IC is equivalent to Ui(vi) ¥ viX̂i(v̂i) + Ti(v̂i) which can be rewritten as

Ui(vi) ¥ Ui(v̂i)� v̂iXi(v̂i) + viXi(v̂i)

ô Ui(vi) ¥ Ui(v̂i) + (vi � v̂i)Xi(v̂i) = Ui(v̂i) + (vi � v̂i)U
1

i(v̂i),

and thus Ui is convex as it lies above all of its tangents.
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implies that

Ui(vi)�Ui(v̂i) =

» vi
v̂i

Xi(y)dy ¥ (vi � v̂i)Xi(v̂i),

which implies that for all vi, v̂i

Ui(vi)�Ui(v̂i) ¥ (vi � v̂i)Xi(v̂i)

ô Ui(vi) ¥ v̂iXi(v̂i) + Ti(v̂i) + (vi � v̂i)Xi(v̂i)

ô Ui(vi) ¥ viXi(v̂i) + Ti(v̂i)

ô Ui(vi) ¥ Ui(v̂i; vi),

which is exactly IC. ■

It follows from Proposition 1 that it is without loss of generality to investigate
mechanisms satisfying IC1 and IC2 as it is equivalent to IC. We actually just proved a
major result in mechanism design, the revenue equivalence principle.

Theorem 2 (Revenue equivalence) In any direct incentive compatible mechanism (x, t), the
interim expected transfer of agent i must be such that

Ti(vi) = Ui(0)� viXi(vi) +
» vi

0
Xi(y)dy,

for all i P N, vi P Vi, and any Ui(0) P R.

Proof. The proof is straightforward. Take any incentive compatible mechanism (x, t),
then by Proposition 1; IC2 must hold for this mechanism. It follows that

Ui(vi) = Ui(0) +
» vi

0
Xi(y)dy

ô viXi(vi) + Ti(vi) = Ui(0) +
» vi

0
Xi(y)dy

ô Ti(vi) = Ui(0)� viXi(vi) +
» vi

0
Xi(y)dy.

■
Although Theorem 2 is a simple consequence of our previous characterization, it

is not a trivial statement. First, the revenue equivalence theorem states that in any
IC mechanism, the interim transfer rule of agent i is entirely defined by the interim
allocation rule Xi and the worst-off type’s utility Ui(0). In other words, once the
principal has chosen Xi, the only remaining degree of freedom for the interim transfer
of agent i is Ui(0). Second, and as a consequence of the previous point, it means that
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for any two mechanisms (x, t) and (x̂, t̂), if they lead to the same interim allocation
rule Xi = X̂i then they must offer the same interim transfer to agent i, up to a constant.
This means that if two mechanisms are such that Xi = X̂i for all i P N (i) they generate
the same interim (and ex ante) revenue, up to a constant, and (ii) they have the same
distributional properties across agents at the interim (and ex ante) stage.3

Finally, it is worth noting that this statement of the revenue equivalence theorem is
much more general that the one usually derived in standard auction settings. Theorem 2
applies for to any nondecreasing interim allocation rules and not only to ex post efficient
mechanisms (such as first- and second- price auctions). It is therefore easy to state the
following.

Corollary 1 First- and second-price auctions generate the same ex ante expected revenue for
the seller.

Proof. The ex post allocation rule in first- and second-price auctions is the same in
both setting: xi(v) = 1tbi = maxiPN bju where bi P R+ is agent i’s bid.4 It follows that
the two auctions have the same interim allocation rule for each agent. Finally, the utility
of the worst-off type is 0 in both auctions (0Xi(0) + Ti(0) = 0 as an agent bidding 0 pays
0). Applying theorem 2 concludes the proof. ■

3.4. Application: Optimal auctions

We now put to work our previous result (revelation principle and revenue equivalence
theorem) and derive the revenue-maximizing auction (Myerson, 1981). Assume a seller
has one unit of an indivisible good to sell and has zero valuation for it. The seller’s
objective consists in maximizing their ex ante revenue, that is,

S(t) := E
¸
iPN

(�ti(v)),

where the minus sign comes from the fact that transfers enters positively into agents’
utility function.

When deciding to define the seller’s revenue as in S(t) we implicitly "assume" that
it makes sense to take expectations over valuations directly to evaluate transfers, i.e.,
that we expect that if the vector of valuations is v P V , the seller will indeed collect ti(v).
This property is true if we assume that we take our candidate mechanisms from the set
of direct incentive compatible mechanisms, which we can do without loss of generality
thanks to the revelation principle (Theorem 1).

3In the sense that each agent has the same expected interim utility in the two mechanisms, for each of
their types.

4Ties can be dealt with in any way as they occur with zero probability thanks to the absolute continuity
of the CDFs.
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Figure 1: Three incentive compatible ’utility schedules’ to implement a given interim
allocation rule Xi.

Recall that IC pins down agents’ utility up to a constant, that is, for a given interim
allocation rule Xi, the interim expected utilities represented in Figure 1 are all IC to
implement Xi. Hence, without further constraints on agents, it is clear that the seller’s
problem would not have any solution since the seller would set the utility of the worst-
off types to minus infinity.

It is therefore natural to impose an additional constraint to ensure the nonnegativ-
ity of interim expected utilities. In other words, this is a participation constraint, or
individual rationality constraint.

It follows that the seller’s problem can be written as follows:

max
x(�),t(�)

E
¸
iPN

(�ti(v))

s.t. viXi(vi) + Ti(vi) ¥ viXi(ṽi) + Ti(ṽi), for all i, vi, ṽi (IC)

viXi(vi) + Ti(vi) ¥ 0, for all i, vi (IR)¸
iPN

xi(v) ¤ 1, for all v. (R)

The seller maximizes revenue subject to (interim) incentive compatibility constraints
(IC), (interim) individual rationality constraints (IR),5 and the resource constraint (R).

The above maximization problem cannot be solved using standard optimization
techniques (notably there are infinitely many IC and IR constraints). Applying Theorem
2, we know that we can replace IC by IC1 and IC2. It also follows that IR can be

5Notice that the IR constraint needs to be satisfied only for agent i’s true type vi as IC ensures that if
any agent i participates they will achieve their maximal utility when telling the truth.
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rewritten in term of IC2 as follows:

Ui(vi) = Ui(0) +
» vi

0
Xi(y)dy ¥ 0 for all i, vi. (IR)

It is straightforward to see that if this constraint is satisfied for vi = 0, i.e. agent i’s
worst-off type, then it is satisfied for all other types vi P Vi. Hence imposing Ui(0) ¥ 0
for all i P N is a necessary and sufficient condition for IR.

The seller’s objective can also be simplified. First, we can rewrite it in terms of
interim transfers,

S(t) = E
¸
iPN

(�ti(v))

= �
¸
iPN

»
V
ti(v)dF(v)

= �
¸
iPN

»
Vi

»
V�i

ti(v)dF�i(v�i)dFi(vi)

= �
¸
iPN

»
Vi

Ti(vi)dFi(vi).

From Theorem 2, we can rewrite S(t) as a function of x and U0 := (Ui(0))iPN only

S(x,U0) := �
¸
iPN

»
Vi

"
Ui(0)� viXi(vi) +

» vi
0
Xi(y)dy

*
dFi(vi).

Notice that

»
Vi

» vi
0
Xi(y)dydFi(vi) =

»
Vi

» vi
y
dFi(vi)Xi(y)dy

=

»
Vi

(1� Fi(y))Xi(y)dy

=

»
Vi

1� Fi(vi)
fi(vi)

Xi(vi)dFi(vi).
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Hence the seller’s objective rewrites as follows:

S(x,U0) =
¸
iPN

»
Vi

!
viXi(vi)�

1� Fi(vi)
fi(vi)

Xi(vi)
)
dFi(vi)�

¸
iPN

Ui(0)

=
¸
iPN

»
V

!
vixi(v)�

1� Fi(vi)
fi(vi)

xi(v)
)
dF(v)�

¸
iPN

Ui(0)

=
¸
iPN

»
V
xi(v)

[
vi �

1� Fi(vi)
fi(vi)

]
dF(v)�

¸
iPN

Ui(0).

It is worth noting that the seller’s objective consists in maximizing the gains from trades°
iPN vixi(v) minus some "distortion"

°
iPN

1�Fi(vi)
fi(vi)

xi(v) and the utilities that must be
ensured to the worst-off types.

It is usual to let

ψi(vi) = vi �
1� Fi(vi)
fi(vi)

,

denote agent i’s virtual valuation, that is, how the seller "perceives" agent i’s valuation
in the sense of rent extraction.

We now rewrite the seller’s problem as follows:

max
x(�),(Ui(0))iPN

¸
iPN

»
V
xi(v)ψi(vi)dF(v)�

¸
iPN

Ui(0)

s.t. Xi is nondecreasing for all i, vi (IC1)

Ui(0) ¥ 0, for all i (IR)¸
iPN

xi(v) ¤ 1, for all v. (R)

It is immediate that IR must be binding for all i P N, that is, Ui(0) = 0 for all i. The only
remaining difficulty is the monotonicity constraint IC1. We will first ignore IC1 and
consider the relaxed problem:

max
x(�)

¸
iPN

»
V
xi(v)ψi(vi)dF(v)

s.t.
¸
iPN

xi(v) ¤ 1, for all v, (R)

and we will check ex post under which conditions the solution to the relaxed problem
is equivalent to that of the original problem.

The relaxed problem is linear in xi, hence pointwise maximization of the integral
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simply gives:6

x
opt
i (v) :=

$&
%

1 if ψi(vi) = maxt0, maxjPNψj(vj)u

0 otherwise.

The revenue-maximizing allocation rule has two interesting properties: (i) it allocates
the good to the agent with the highest positive virtual valuation, (ii) it might not allocate
the good to any of the agents if all virtual valuations are negative.

It follows that the revenue-maximizing allocation distorts the ex post efficient alloca-
tion in possibly two directions: First from (i) the good is not necessarily allocated to the
agent with the highest valuation and from (ii) the seller benefits from rationing which is
never the case for the ex post efficient allocation (given that the seller has zero valuation
for the good).

Recall, however, that this solution is the one of the relaxed problem. A sufficient
condition for xopti (v) to be also solution to the original problem is the following.

Assumption 1 The virtual valuation of each agent i P N, ψi(vi) is nondecreasing in vi.

A usual sufficient condition on distributions for this assumption to be true is to assume
a nondecreasing monotone hazard rate (fi/(1� Fi)). When assumption 1 holds, it is
clear that xopti (v) is nondecreasing in vi and so is Xopti .

If some virtual valuations are nonmonotonic, the solution to the relaxed problem is
not anymore valid and we have to use "ironing" techniques. The interested reader may
refer to Myerson (1981) for more on this issue.

4. TWO-SIDED PRIVATE INFORMATION ENVIRONMENTS

We now turn to environments in which the two sides of the market can have private
information. For instance, contrary to the standard auction design studied before, not
only the agents can have private information but also the seller. We will also allow
agents not to be necessarily ex ante identified as buyers or sellers and their trading
position will be defined as the result of the allocation mechanism.

For simplicity, we will focus on ex post efficient allocation mechanisms but the analysis
can be somewhat extended to incentive compatible allocation rules. Formally, it means
that we will restrict ourselves to the ex post allocation rule such that:

x�i (v) := 1tvi = max
jPN

vju, (EF)

6This allocation rule is technically ill-defined as it requires to allocate the good with probability 1 to two
(or more) agents if a tie occurs (in terms of virtual valuations). Rigorously, we should define an allocation
rule that breaks tie in favor of some agent (and only one) but its particular design is unimportant given
that ties occur with zero probability. We therefore ignore this minor issue for the sake of clarity.
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that is, whoever has the highest valuation receives the good with probability one.7

To account for the two-sidedness of asymmetric information we make a simple yet
key assumption about agents’ outside options. If agent i refuses to participate in the
mechanism proposed by the principal, we assume that they can consume their outside
option defined by uoi : V Ñ R. By definition, the outside option of agent i can be
type-dependent, both on agent i’s own type but also on any other agent j’s other type.
We let Uoi (vi) = E�iu

o
i (vi) denote agent i’s interim expected outside option. We will

see later how we can set these outside options to represent buyer-seller relationships
or partnerships. Individual rationality constraint (IR) must be such that the utility any
agent i receives when participating is greater than their outside option.

Finally, we will impose (ex post) budget balance constraints (BB) on transfers. That
is, we want transfers to be such

°
iPN ti(v) = 0 for all v P V . This is a natural condition

when looking for the existence of EF mechanisms: We want to know if we can achieve
ex post efficient trade in a market in which all monetary transfers happen only among
the participants (aka the traders). In other words, we want to know if such an efficient
market can exist without the need to subsidize it.

The problem we have to solve is therefore that of finding whether there exists a
transfer rule t such that an EF, IC, IR and BBmechanism exists.

4.1. Groves mechanisms

An interesting class of mechanisms are called Groves mechanisms. There are essentially
EF and ICmechanisms whose ex post transfer rule is explicitly defined as:

t�i (v) := g(v)� vix
�

i (v)� hi(v),

where g(v) =
°
iPN vix

�

i (v) are the ex post maximal gains from trade, and hi(v) is a
non-distortionary charge such that E�ihi(vi, v�i) = E�ihi(ṽi, v�i) for all i, vi and ṽi. For
simplicity we will define Hi := E�ihi(v).

Let us call a Groves mechanism with hi(v) = 0 for all i and v a basic Groves mechanism.
Intuitively, in a basic Groves mechanism, if agent i has the highest valuation they receive
the good (that they value vi) and receives a transfer g(v)� vix�i (v) = vi� vi = 0. Instead,
if agent i does not have the valuation they only receive a transfer g(v) � vix�i (v) =

g(v)� 0 = maxjPN vj, that is, they receive a monetary transfer equal to the utility of the
"winning" agent. This structure is such that every agent receives the entire gains from
trade and this is what makes Groves mechanism incentive compatible.

Of course, the drawback is that a basic Groves mechanisms is "costly" to implement

7Again, we ignore the situation in which two or more agents have the same valuations, without loss
of generality.
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as it generates a deficit equal to

¸
iPN

tg(v)� vix
�

i (v)u = (n� 1)g(v),

as Groves transfers are such that they give the entire gains from trade to each of the
(n� 1) "loosing" agents.

Hence, the presence of the non-distortionary charge hi in a Groves mechanism will
serve as a way to collect back this deficit. Given that the charge is a constant at the
interim stage, they will not affect the agents’ incentive to report truthfully and can be
seen as lump-sum transfer from the point of view of the agents.

The usefulness of Groves mechanisms is that they provide conditions that are easy
to interpret. But of course, given that they are EF and IC, it means that any other EF and
ICmechanisms yields the same interim transfers to each agent. Their use here is only
for the purpose of exposition and is without loss of generality.

4.2. Existence of ex post efficient mechanisms

We now turn to the existence of ex post efficient mechanisms, relying on Groves mecha-
nism, without loss of generality. That is, we want to know whether there exists a Groves
transfer t� such that (x�, t�) is IR and BB.8

First, we derive a necessary condition for any Groves mechanism to be IR. Starting
with IR, we must have that for all i and vi,

E�iui(v) ¥ E�iu
o
i (v)

ô E�i [vix
�

i (v) + t
�

i (v)] ¥ E�iu
o
i (v)

ô E�i [g(v)� hi(v)] ¥ E�iu
o
i (v)

ô Hi ¤ E�i [g(v)� u
o
i (vi)] .

DefineCi(uoi ) := infviPVi
 

E�i

[
g(v)� uoi (vi)

](
, then the above condition simply rewrites:

Hi ¤ Ci(u
o
i ).

In words, this condition requires that the non-distortionary charge at the interim stage
is at most equal to the interim utility of agent i’s worst-off type in a basic Groves.
Importantly, notice that agent i’s worst-off type is not necessarily that with vi = 0 as it
now depends on their outside option.

Second, we derive a necessary condition for any Groves mechanism to be BB. Budget

8Notice that (x�, t�) is necessarily EF and IC by definition. Hence we only have to check whether
there exists a Groves mechanism that satisfies IR and BB.
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balance requires that
°
iPN t

�

i (v) = 0 for all v P V . Therefore, this condition must also be
true at the ex ante stage, that is,

E
¸
iPN

t�i (v) = 0

ô
¸
iPN

E tg(v)� vix
�

i (v)� hi(v)u = 0

ô
¸
iPN

Hi = (n� 1)Eg(v).

It follows that (ex post) BB implies that the sum of all interim (or ex ante, it is the same
here) non-distortionary charges must cover the (ex ante) deficit generated by a basic
Groves mechanism.

Combining our two previous results, we have that the maximal amount of charges
that can be imposed on the n agents (due to IR) is such that

¸
iPN

Hi ¤
¸
iPN

Ci(u
o
i ),

and these charges must also cover the deficit so that

¸
iPN

Ci(u
o
i ) ¥ (n� 1)Eg(v),

is a necessary condition for a Groves mechanism to be both IR and BB.

Theorem 3 An EF, IC, IR and BB mechanism exists if and only if
°
iPNCi(u

o
i ) ¥ (n �

1)Eg(v).

Proof. The ’only if’ part derives from the above computations and from Theorem 2
as all the necessary conditions we have derived are at the interim stage, they must be
true for any EF and IC mechanism (not only for Groves mechanisms). The ’if’ part is
constructive and requires to explicitly construct a transfer function satisfying all the
constraints. This part of the proof is left to the interested reader (see Makowski and
Mezzetti, 1984; Williams, 1999). ■

4.3. Applications: Buyer-seller relationships and partnerships

The existence result of Theorem 3 can be used to derive famous results in mechanism
design. Here we will investigate that of Myerson and Sattertwhaite (1983) and Cramton
et al (1987).

Assume now that uoi (v) = viri where ri P [0, 1] and
°
jPN rj = 1. Let r := (r1, . . . , rn) P

∆n�1. We can interpret ri as agent i’s initial ownership share of the good. When ri = 1,
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agent i fully owns the good, when ri = 0 they have no share and any ri P (0, 1)
represents some partial ownership.

We can now fully characterize theCi(�), that is, the maximal collectible non-distortionary
charge on agent i. For simplicity, assume that Fi = F and Vi = [0, v] = V for all i P N
and let Ci(ri) denote this maximal collectible charge for clarity. We have that

Ci(ri) : = inf
viPV

tE�ig(v)� viriu (1)

= inf
viPV

"» vi
0
vidF(y)

n�1 +

» v
vi

ydF(y)n�1 � viri

*
.

The first-order condition of this problem writes9

viF(vi)
n�1 + F(vi)

n�1 � viF(vi)
n�1 � ri = 0

ô F(vi)
n�1 = ri.

Let v�i (ri) := arg minviPV Ci(ri) denote the solution to the FOC. In fact, v�i (ri) is agent i’s
worst-off type. Notice that v�i (0) = 0, that is, type vi = 0 is the worst-off type when agent
i has no initial ownership share. This particular case is consistent with our previous
application in one-sided environments (agents in the optimal auction). Furthermore,
v�i (ri) is increasing in ri meaning that the larger the ownership share the higher is the
valuation of the worst-off type. We also have that v�i (1) = v, that is, if agent i has full
ownership their worst-off type is the the one with the highest possible valuation.

We can rewrite Ci(ri) as follows:

Ci(ri) =

» v
v�i (ri)

ydF(y)n�1,

which is a decreasing function of ri as v�i (ri) is increasing in ri. Hence, the larger the
initial ownership share, the lower the maximal collective non-distortionary charge.
Also, notice that Ci(1) = 0 so that nothing can be collected on an agent if they have full
ownership.

Buyer-Seller relationship. We can now state the impossibility to achieve ex post
efficient trade in buyer-seller problems with asymmetric information on both sides as
famously proven by Myerson and Sattertwhaite (1983).10

9Which is both necessary and sufficient. Sufficiency stems from the fact that the second-order deriva-
tive writes (n� 1)f(vi)F(vi)n�2

¥ 0 for all vi P V . Hence the function is convex in vi and the FOC
characterizes the global minimum.

10We prove a slightly less general version of Myerson and Sattertwhaite (1983)’s main result here as we
assume symmetric CDF for the two agents. We make this assumption only for simplicity but the result
holds even with asymmetric CDF and supports of valuations.
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Theorem 4 (Myerson and Sattertwhaite, 1983) Assume n = 2, r1 = 1, and r2 = 0. Then,
no EF, IC, IR and BB mechanism exists.

Proof. Assume n = 2, r1 = 1, and r2 = 0. Then v�1(r1) = v and v�2(r2) = 0 so
that C1(r1) = 0 and C2(r2) =

³v
0 ydF(y). Hence

°
iPNCi(ri) = C2(0). From Theorem

3, a mechanism satisfying all the constraints exists if and only if
°
iPNCi(ri) covers

the ex ante deficit (n � 1)Eg(v) = Eg(v) =
³v

0 ydF(y)
2. As F(y)2 clearly first-order

stochastically dominates F(y), it immediately follows that
³v

0 ydF(y)  
³v

0 ydF(y)
2, or

equivalently that
°
iPNCi(ri)   Eg(v). ■

Theorem 4 is (a slightly simplified version of) Myerson and Sattertwhaite (1983)’s
major impossibility result. There are only two agents, agent 1 is the seller (has full
initial ownership) and agent 2 is the buyer (no initial ownership). From the proof, it is
clear that the failure of existence of EFmechanisms in that case stems from the conflict
between satisfying IR and covering the deficit generated by an IC mechanisms to satisfy
BB. The main issue is that r1 = 1 leads to C1(r1) = 0, that is, nothing can be collected
on the seller. The fact that r2 = 0 allows us to collect a very large charge on the buyer is
not enough to compensate for r1 = 0.

It is interesting to investigate further the properties of the maximal collectible charge
Ci(ri). From its definition, equation (1), we can apply the Envelope theorem so that
C 1

i(ri) = �v�i (ri). It immediately follows that Ci is concave in ri as C2

i ¤ 0 given that
v�i (ri) is increasing in ri.

Still assume that n = 2 but take any r P ∆. The sum of maximal collectible charges
can be written as

¸
iPN

Ci(ri) = C1(r1) +C2(1� r1).

Differentiating this expression with respect to r1 gives that C 1

1(r1) + C
1

2(1 � r1) =

�v�1(r1) + v
�

2(1 � r1). It is clear that C2

1 (r1) + C
2

2 (1 � r1) ¤ 0 so that the sum of col-
lectible charges is concave in r1. By the symmetry of agents (in distributions) and
concavity of C1(r1) +C2(1� r1), we have that its minimum is attained at the extreme
points of the constraint set, r1 = 0 and r1 = 1. In words, it means that the ownership
structure of Theorem 4 is the worst one can expect, a monopoly position over the
ownership of the good.

Solving for r�1 P arg maxr1P[0,1]C1(r1) + C2(1 � r1), r�1 must solve the first-order
condition:

�v�1(r
�

1) + v
�

2(1� r
�

1) = 0.

The most favorable ownership structure for our problem is such that v�1(r
�

1) = v
�

2(1� r
�

1),
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r1 r�1 = 0.5 r1 1

°
iPNCi(ri)

Eg(v)

r1

Figure 2: The sum of collectible charges depending on the initial ownership structure
when n = 2 and same distribution of valuations.

that is, both agents have the same worst-off type. Given our assumption on CDF, the
only possible solution to this equation is when r1 = 1/2, i.e., initial shares must be equal.

A natural question to ask is whether an EF mechanism exists when r1 = r�1. First
notice that v�i (0.5) = F�1(0.5) from the first-order condition of the problem defined by
(1). For simplicity assume that F(vi) = 1 over support [0, 1]. Then is is easy to compute
that v�i (0.5) = 0.5 and that

¸
iPN

Ci(0.5) = 2
» 1

0.5
ydy = 0.75,

while Eg(v) =
³1

0 ydy
2 = 1/3. Hence

°
iPNCi(0.5) ¡ Eg(v) and an EFmechanism exists!

As the inequality is strict it means that there exists also a r1   0.5 and a r1 ¡ 0.5 such
that any r1 P [r1, r1] allow for an EFmechanism to exist. Figure 2 illustrates this case.

Therefore, we know that for the specific case n = 2 and uniform distributions, there
exists a non empty subset S � ∆ with (0.5, 0.5) P S such that an EF mechanism exists
for any r P S. In fact this result can be generalized to any number of agents and any
distribution of valuations.

Partnerships. Consider any n ¥ 2 and any symmetric distribution of valuations F.
The following holds.

Theorem 5 (Cramton, Gibbons and Klemperer, 1987)) For any n ¥ 2, an EF, IC, IR and
BBmechanism always exists if ri = 1

n for all i P N. Furthermore, there exists a subset S � ∆n�1

for which (1/n, . . . , 1/n) P S and such mechanisms exists for all r P S.
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Proof. Let n ¥ 2, F be any absolutely continuous CDF with support over V := [0, v]
and ri = 1

n for all i P N. It follows that for all i, v�i (ri) = F�1(( 1
n)

1
n�1 ) and notice that

F(v�i )
n�1 = 1/n. We have that

¸
iPN

Ci(1/n)� (n� 1)Eg(v)

= n

» v
v�i (1/n)

ydF(y)n�1 � (n� 1)
» v

0
ydF(y)n

= n

[
v� v�i F(v

�

i )
n�1 �

» v
v�i

F(y)n�1dy

]
� (n� 1)

[
v�

» v
0
F(y)ndy

]
= (v� v�i ) + (n� 1)

» v
0
F(y)ndy�n

» v
v�i

F(y)n�1dy

= (v� v�i )�

» v
v�i

[
nF(y)n�1 � (n� 1)F(y)n

]
dy+ (n� 1)

» v�i
0
F(y)ndy,

where the third line is obtained by integrating by parts each integral. Notice first that
nF(y)n�1 � (n� 1)F(y)n ¤ 1 for all v�i P V .11 It follows that the term (v� v�i ) is greater
than the second integral term.12 Hence,

°
iPNCi(1/n)� (n� 1)Eg(v) ¡ 0. ■

11Differentiating nF(y)n�1
� (n � 1)F(y)n with respect to y immediately yields n(n �

1)f(y)F(y)n�2[1� F(y)] ¥ 0. Hence nF(y)n�1
� (n� 1)F(y)n is increasing and its maximum is 1 at

y = v.
12Indeed, notice that v� v�i =

³v
v�i

1dy.
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