FLEXIBILITY VERSUS SECURITY IN AGENCY CONTRACTS WITH MORAL HAZARD

Lorenzo Bozzoli
Toulouse School of
Economics

Guillaume Pommey
Tor Vergata University of
Rome

III Italian Junior Theory Workshop May 9, 2025

Motivation

Over the course of a contractual relationship, **new outside opportunities** may arise.

Early termination clauses can help parties to seize them.

But may also weaken the strength of the initial agreement.

- Labor contracts (employer, employee).
- ▶ **Joint ventures** (partnerships between firms).
- Business relocation (public-private partnerships).

Motivation

The trade-off we have in mind is that between:

- Guaranteeing some security for encouraging relation-specific investment;
- ▶ Providing some **flexibility** to allow for early termination.

Several approaches are possible and usually relies on **incomplete contracting** or **limited commitment** assumptions.

Instead we tackle the problem in a full commitment environment and exhibit 'incomplete contracting' as an endogenous choice.

Overview of the framework

Standard principal-agent with moral hazard and limited liability.

Augmented with a stochastic and **privately observed outside option** for the principal.

► The value of outside option realizes after the agent effort is sunk and before output is produced.

The principal can design her own **exit rights** from the contract and commit to a **liquidation fee**.

Framework: Setup

Principal hires an agent to work on a **project** with outcome $\pi \in \{\underline{\pi}, \overline{\pi}\}.$

Success depends on **effort** $e \in \{L, H\}$.

- $ightharpoonup \mathbb{P}(\pi=\overline{\pi})=:p_{e}, \text{ where } p_{H}>p_{L}.$
- ► Cost of effort: $\psi_H > \psi_L = 0$.

Principal's **outside option:** $x \in X$, where $x \sim F$, and $Q := F^{-1}$.

- ▶ Realizes only **after** effort is sunk.
- But before the project's outcome realizes.

We focus on contracts inducing high effort.

Framework: Contract and Timing

We consider **contracts with exit rights** $C := \{(\overline{t}, \underline{t}), z\}.$

- ▶ Project contract: $(\bar{t}, \underline{t}) \in \mathbb{R}^2_+$;
- ▶ Liquidation fee: $z \in \mathbb{R}_+ \cup +\infty$.

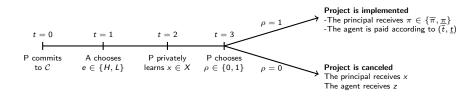


Figure: Timing of the game.

Generality of Contracts with Exit Rights

Our definition of contracts with exit rights is minimal.

General approach: $\{(\overline{t},\underline{t}),z,\rho\}:X\to [0,\infty)^3\times [0,1].$

- ▶ All payments can be **contingent** on the reported value of the outside option.
- ► The principal can commit to an implementation rule: $\rho(x) \in [0, 1]$.

The principal can commit ex ante but must report the value of the outside option at the interim stage.

Adverse selection problem with her future self.

Generality of Contracts with Exit Rights

We show that our approach is without loss of generality.

► The adverse selection problem the principal faces with her future self renders conditioning on *x* irrelevant.

The implementation rule is a **threshold rule**: $\rho(x) = \mathbb{1}\{x \leq \tilde{x}\}.$

- lt is enough to consider a unique liquidation fee z.
- ▶ We use $z = +\infty$ to represent the case $\rho(x) = 1$ for all $x \in X$.

Implementation Probability

Define $\phi := F(\tilde{x})$, the implementation probability of the **project** when the threshold rule is \tilde{x} .

For convenience, we let the principal choose $\phi \in (0,1]$ together with a contract with exit rights C.

Principal's expected payoff writes:

$$V := \phi \underbrace{\left(Y_H - T_H\right)}_{\text{Expected return}} + (1 - \phi) \underbrace{\left(\hat{x}(\phi) - z\right)}_{\text{Net value of the outside option}},$$

where
$$Y_H := p_H \overline{\pi} + (1 - p_H)\underline{\pi}$$
, $T_H := p_H \overline{t} + (1 - p_H)\underline{t}$, and $\hat{x}(\phi) := \mathbb{E}[x \mid x \geq Q(\phi)]$.

Consistency Constraint

Of course, ϕ must be **consistent** with the principal's interim decision to exit.

For a given contract with exit rights
$$\mathcal{C}$$
, it must satisfy
$$\phi = \mathbb{P}(x-z \leq Y_H - T_H) = F(Y_H - T_H + z), \text{ or simply,}$$

$$Y_H - T_H = Q(\phi) - z. \tag{PIC}$$

 ϕ is entirely determined by $\mathcal C$ but it is useful to use it explicitely.

Agent and Incentive Compatibility

The **expected payoff** of the agent writes:

$$U := \phi T_H + (1 - \phi)z - \psi_H.$$

Provided that C induces high effort: $U \ge \phi T_L + (1 - \phi)z$.

Agent's incentive compatibility rewrites as:

$$\overline{t} - \underline{t} \ge \frac{C_H}{\phi p_H},$$
 (AIC)

where $C_H := \frac{p_H \psi_H}{p_H - p_L}$ is the standard **agency cost.**

Trade-offs

Increasing ϕ :

- Lowers the cost of incentives;
- Decreases flexibility.

For an increase of ϕ to be *consistent*, P may have to increase the liquidation fee z.

Benchmark 1: Social Optimum

Consider a **social planner** who observes the realization of the outside option but not the effort level.

They choose $\mathcal C$ and ϕ to **maximize**

$$U + V = \phi Y_H + (1 - \phi)\hat{x}(\phi) - \psi_H,$$

subject to *AIC*, $U \ge 0$, $V \ge \mathbb{E}[x]$ and limited liability constraints on \overline{t} , \underline{t} , and z.

Benchmark 1: Social Optimum

Proposition

The **socially optimal** implementation policy is such that $Q(\phi^{FB}) = Y_H$.

In other words, the project is implemented if and only if $Y_H > x$.

▶ Agency costs are sunk at the interim stage: irrelevant.

The liquidation fee z plays no role in achieving the social optimum.

It only affects distribution of surplus.

Benchmark 2: Verifiable outside option

Assume the outside option is verifiable.

➤ The principal can make the contract contingent on the realized value of the outside option (instead of reported).

Proposition

Assume the outside option is **verifiable**. The principal chooses $\phi^* = \phi^{FB}$ and the equilibrium contract is such that $\overline{t}^* = \frac{C_H}{\phi^{FB}p_H}$, $\underline{t}^* = 0$, and $z^* = 0$.

Benchmark 2: Verifiable outside option

With verifiability, the principal implements the social optimum.

The problems of providing effort incentives and efficiently terminating the project can be **separated**.

Full commitment is crucial here:

- At the interim stage, implementing the project when $Y_H \ge x$ is not **sequentially rational**.
- ▶ The project is worth only $Y_H p_H t^*$ at the interim stage.
- ▶ The principal would like to implement the project *less often*.
- ▶ But it is **ex ante efficient**.

The principal's problem

Coming back to the **privately** observed outside option.

The principal solves:

$$\begin{aligned} \max_{(\phi, \overline{t}, \underline{t}, z)} & \phi(Y_H - T_H) + (1 - \phi)(\hat{x}(\phi) - z) \\ \text{s.t.} & \phi T_H + (1 - \phi)z - \psi_H \geq 0 \end{aligned} \qquad (IR) \\ & \overline{t} - \underline{t} \geq \frac{C_H}{\phi p_H} \qquad (AIC) \\ & Y_H - T_H = Q(\phi) - z \qquad (PIC) \\ & z \geq 0, \ \overline{t} \geq 0, \ \underline{t} \geq 0, \qquad ((LL_z), \ (LL_{\overline{t}}), \ (LL_{\underline{t}})) \end{aligned}$$

Simplifying the problem

From standard arguments:

- ► IR is slack.
- ▶ AIC binds: $\bar{t} = \frac{C_H}{\phi p_H} + \underline{t}$.
- ► *LL_t* binds?

Using AIC, PIC rewrites as:

$$Y_H - \frac{C_H}{\phi} - \underline{t} = Q(\phi) - z.$$
 (PIC)

Both sides are increasing in ϕ .

Potentially multiple solutions.

A reformulation

Define
$$\zeta(\phi) := Q(\phi) - Y_H + \frac{C_H}{\phi}$$
.

- ► Can be loosely interpreted as the "cost" of satisfying PIC.
- ▶ From PIC, $\underline{t} = z \zeta(\phi)$.

The principal's problem can be reformulated as:

$$\max_{\substack{\phi,z\\}}\quad \phi Q(\phi) + (1-\phi)\hat{x}(\phi) - z$$
 s.t. $z \geq \max\{0,\zeta(\phi)\}$

Can be interpreted as

- ▶ the expected value of an **option-to-sell** the outside option at strike price $Q(\phi)$,
- while paying an **upfront price** z.

Solution(s)

Proposition (Informal)

Any solution ϕ^* must belong to $[\phi,1]$, where

$$\underline{\phi} := \sup\{\phi \in [0,1] \mid \zeta(\phi) = 0\}$$

and $z^* = \zeta(\phi^*) \ge 0$ for all $\phi \in [\phi, 1]$.

It implies:

- $\underline{t}^* = z^* \zeta(\phi^*) = 0.$
- $ightharpoonup z^* > 0$ may be optimal for the principal.
- ▶ The "price" $\zeta(\phi^*)$ is always in its positive part.

20 / 31

Solution(s)

To obtain a clear-cut characterization, we assume the following.

Assumption (Single-crossing)

For any C_H , there exists at most one $\tilde{\phi} \in (0,1]$ such that $I(Q(\tilde{\phi})) = \frac{C_H}{\tilde{\phi}^2}$, where $I(x) = \frac{1 - F(x)}{f(x)}$ is the inverse hazard rate.

Satisfied by all F with nondecreasing inverse hazard rate (exp, Pareto, ...) and under some conditions when decreasing.

It ensures the **strict quasi-concavity** of the principal's problem.

Characterization

Proposition (Informal)

Under the single crossing condition, the equilibrium contract is unique and takes one of the three following contractual forms.

- ▶ Lock-in contract: $\phi^* = 1$, $z^* = +\infty$;
- ▶ Partially-secured contract: $\phi^* < 1$, $z^* \in (0, \infty)$;
- ▶ At-will contract: $\phi^* < 1$, $z^* = 0$.

Lock-in contracts correspond to the standard solution.

Partially-secured and at-will contracts both **allow the principal to terminate the project** at the interim stage.

▶ With or without **consequences** (*z*).

Focus on Partially-Secured Contracts

The equilibrium ϕ is defined by:

$$\underbrace{I(Q(\phi^*))}_{\text{Virtual marginal cost of type }Q(\phi^*)} = \underbrace{\frac{C_H}{(\phi^*)^2}}_{\text{Marginal benefit on agency costs}}$$

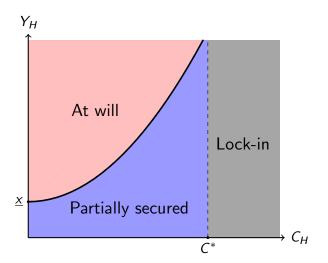
The principal solves the **trade-off** between

- the cost of incentivizing her future self to implement the project;
- the benefit of decreasing the cost of effort incentives.

This intermediary case happens when LL_z is **not binding.**

ightharpoonup z is used **as a tool** to satisfy *PIC* at ϕ^* .

Type of Contract: Project Value and Agency Costs



Type of Contract: Project Value and Agency Costs

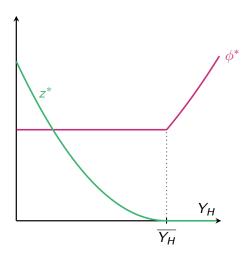
Lock-in contracts occur only when $C^* = \lim_{x \to +\infty} I(x)$ is **finite**.

Distribution of the outside option has a **thin upper tail**.

For thicker upper tail, expected project value is key.

ightharpoonup Liquidation fee is positive only for low enough Y_H .

Security and liquidation fee



Security and liquidation fee

For low project value:

- Constant security level.
- ightharpoonup Liquidation fee decreasing in Y_H .

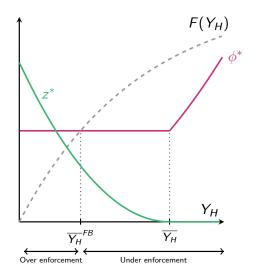
For **high** project value:

- Increasing security.
- No liquidation fee.

Careful: Agents with weak projects seem to be less secured than those with strong project.

ightharpoonup Socially optimal security depends on Y_H .

Over and under enforcement



Over and under enforcement

In general, both under and over enforcement can occur.

The principal

- Overenforces very weak projects;
- Undenforces the others.

The larger Y_H the more the project *self-enforced* itself.

► Hence the less *z* is needed.

Statutory liquidation fee

Assume that a social planner can only impose a minimum level of liquidation fee.

The optimal choice is $z = \zeta(\phi^{FB})$

- ► Achieves the first-best when there is underenforcement;
- Does nothing when there is overenforcement.

Provides a rational for banning at-will contracts

- Not based on equity concerns or risk aversion
- Only based on efficiency.

Conclusions

We exhibit some **endogenous incomplete contracting** and characterize the three types of contracts that emerge.

The key element is the **adverse selection** problem the principal faces with her future self.

All contractual forms involve some **distortion** of implementation but both over and under enforcement are possible.

Banning at-will contracts is optimal.